A place with a view: A first‐person perspective in the hippocampal memory space

How do rodents' and primates' differences in visual perception impact the way the brain constructs egocentric and allocentric reference frames to represent stimuli in space? Strikingly, there are important similarities in the egocentric spatial reference frames through which cortical regions represent objects with respect to an animal's head or body in rodents and primates. These egocentric representations are suitable for navigation across species. However, while the rodent hippocampus represents allocentric place, I draw on several pieces of evidence suggesting that an egocentric reference frame is paramount in the primate hippocampus, and relates to the first‐person perspective characteristic of a primate's field of view. I further discuss the link between an allocentric reference frame and a conceptual frame to suggest that an allocentric reference frame is a semantic construct in primates. Finally, I discuss how views probe memory recall and support prospective coding, and as they are based on a first‐person perspective, are a powerful tool for probing episodic memory across species.

[1]  Kaushik J. Lakshminarasimhan,et al.  Computational cross‐species views of the hippocampal formation , 2023, Hippocampus.

[2]  R. Luna,et al.  View cells in the hippocampus and prefrontal cortex of macaques during virtual navigation , 2023, Hippocampus.

[3]  R. Quian Quiroga An integrative view of human hippocampal function: Differences with other species and capacity considerations , 2023, Hippocampus.

[4]  C. Stern,et al.  Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus , 2023, Hippocampus.

[5]  J. Jacobs,et al.  Single neurons in the human medial temporal lobe flexibly shift representations across spatial and memory tasks , 2023, bioRxiv.

[6]  J. Taube,et al.  A model for transforming egocentric views into goal‐directed behavior , 2023, Hippocampus.

[7]  Y. Naya,et al.  Allocentric information represented by self‐referenced spatial coding in the primate medial temporal lobe , 2023, Hippocampus.

[8]  M. Mehta,et al.  Mega-scale movie-fields in the mouse visuo-hippocampal network , 2022, bioRxiv.

[9]  Inah Lee,et al.  Significance of visual scene‐based learning in the hippocampal systems across mammalian species , 2022, Hippocampus.

[10]  E. Rolls Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans , 2022, Hippocampus.

[11]  M. Mehta,et al.  Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus , 2021, Nature.

[12]  E. J. Tehovnik,et al.  Visuomotor control in mice and primates , 2021, Neuroscience & Biobehavioral Reviews.

[13]  D. Mao,et al.  Spatial modulation of hippocampal activity in freely moving macaques , 2021, Neuron.

[14]  M. Hasselmo,et al.  Adaptive integration of self-motion and goals in posterior parietal cortex , 2020, bioRxiv.

[15]  R. Quiroga Searching for the neural correlates of human intelligence , 2020, Current Biology.

[16]  Angie M Michaiel,et al.  Dynamics of gaze control during prey capture in freely moving mice , 2020, bioRxiv.

[17]  Arne D. Ekstrom,et al.  Precision, binding, and the hippocampus: Precisely what are we talking about? , 2020, Neuropsychologia.

[18]  Michael E. Hasselmo,et al.  Egocentric boundary vector tuning of the retrosplenial cortex , 2019, Science Advances.

[19]  Robert E. Gross,et al.  Single-Neuron Representations of Spatial Targets in Humans , 2019, Current Biology.

[20]  Stefano Fusi,et al.  Context-dependent representations of objects and space in the primate hippocampus during virtual navigation , 2019, Nature Neuroscience.

[21]  Cory T. Miller,et al.  Spatial encoding in primate hippocampus during free navigation , 2019, PLoS biology.

[22]  Dori Derdikman,et al.  Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries , 2019, Current Biology.

[23]  M. Hasselmo,et al.  Neuronal representation of environmental boundaries in egocentric coordinates , 2019, Nature Communications.

[24]  A. Ekstrom,et al.  A contextual binding theory of episodic memory: systems consolidation reconsidered , 2019, Nature Reviews Neuroscience.

[25]  J. Duhamel,et al.  Schema cells in the macaque hippocampus , 2019, Science.

[26]  Sachin S. Deshmukh,et al.  Egocentric coding of external items in the lateral entorhinal cortex , 2018, Science.

[27]  E. Kandel,et al.  Heading direction with respect to a reference point modulates place-cell activity , 2018, bioRxiv.

[28]  A. Reichenbach,et al.  The primate fovea: Structure, function and development , 2018, Progress in Retinal and Eye Research.

[29]  Sönke Johnsen,et al.  Visual Acuity and the Evolution of Signals. , 2018, Trends in ecology & evolution.

[30]  Bartul Mimica,et al.  Efficient cortical coding of 3D posture in freely behaving rats , 2018, Science.

[31]  Kimberly L. Stachenfeld,et al.  The hippocampus as a predictive map , 2017, Nature Neuroscience.

[32]  J. Duhamel,et al.  Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation , 2017, PLoS biology.

[33]  Elizabeth A. Buffalo,et al.  Getting directions from the hippocampus: The neural connection between looking and memory , 2016, Neurobiology of Learning and Memory.

[34]  Sylvia Wirth,et al.  Independent Neuronal Representation of Facial and Vocal Identity in the Monkey Hippocampus and Inferotemporal Cortex. , 2016, Cerebral cortex.

[35]  E. Maguire,et al.  Anterior hippocampus: the anatomy of perception, imagination and episodic memory , 2016, Nature Reviews Neuroscience.

[36]  Flavia Filimon,et al.  Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames , 2015, Front. Hum. Neurosci..

[37]  J. Allman,et al.  Retinotopic organization of extrastriate cortex in the owl monkey—dorsal and lateral areas , 2015, Visual Neuroscience.

[38]  Aiden E. G. F. Arnold,et al.  A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective , 2014, Front. Hum. Neurosci..

[39]  J. Ahern,et al.  Remembering the Past , 2013, The Annals of pharmacotherapy.

[40]  Michael J. Jutras,et al.  Oscillatory activity in the monkey hippocampus during visual exploration and memory formation , 2013, Proceedings of the National Academy of Sciences.

[41]  R. Quiroga Concept cells: the building blocks of declarative memory functions , 2012, Nature Reviews Neuroscience.

[42]  Günther Deuschl,et al.  CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness , 2011, Proceedings of the National Academy of Sciences.

[43]  Alain Berthoz,et al.  The integration of spatial information across different viewpoints , 2011, Memory & cognition.

[44]  M. Frens,et al.  Three-dimensional optokinetic eye movements in the C57BL/6J mouse. , 2010, Investigative ophthalmology & visual science.

[45]  A D Redish,et al.  Prediction, sequences and the hippocampus , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[47]  Larry R Squire,et al.  Neural basis of the cognitive map: Path integration does not require hippocampus or entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[48]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[49]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[50]  S. Becker,et al.  Remembering the past and imagining the future: a neural model of spatial memory and imagery. , 2007, Psychological review.

[51]  E. Maguire Deconstructing episodic memory with , 2007 .

[52]  Mary Hayhoe,et al.  Control of attention and gaze in complex environments. , 2006, Journal of vision.

[53]  Ranxiao Frances Wang,et al.  Spatial updating relies on an egocentric representation of space: Effects of the number of objects , 2006, Psychonomic bulletin & review.

[54]  Thomas P. Trappenberg,et al.  Self-organising continuous attractor networks with multiple activity packets, and the representation of space , 2004, Neural Networks.

[55]  J. Henderson Human gaze control during real-world scene perception , 2003, Trends in Cognitive Sciences.

[56]  L. Frank,et al.  Single Neurons in the Monkey Hippocampus and Learning of New Associations , 2003, Science.

[57]  E. Tulving Episodic memory: from mind to brain. , 2002, Annual review of psychology.

[58]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[59]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[60]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[61]  E. Rolls,et al.  A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells , 2001, Hippocampus.

[62]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[63]  Larry R. Squire,et al.  Memory for places learned long ago is intact after hippocampal damage , 1999, Nature.

[64]  E. Rolls,et al.  Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. , 1999, Cerebral cortex.

[65]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[66]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[67]  T. McNamara,et al.  Viewpoint Dependence in Scene Recognition , 1997 .

[68]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[70]  E. Rolls,et al.  Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate , 1991, Psychobiology.

[71]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[72]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[73]  E. Bisiach,et al.  Unilateral Neglect of Representational Space , 1978, Cortex.

[74]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.