Circuit lower bounds for Merlin-Arthur classes

We show that for each k> 0, MA/ 1( MA with 1 bit of advice) does not have circuits of size n k . This implies the first superlinear circuit lower bounds for the promise versions of the classes MA, AM ,a ndZPP NP . We extend our main result in several ways. For each k ,w e give an explicit language in (MA ∩ coMA)/1 which does not have circuits of size nk. We also adapt our lower bound to the average-case setting; i.e., we show that MA/1 cannot be solved on more than 1/ 2+1 /n k fraction of inputs of length n by circuits of size n k . Furthermore, we prove that MA does not have arithmetic circuits of size n k for any k. As a corollary to our main result, we obtain that derandomization of MA/O(1) implies the existence of pseudorandom generators computable using O(1) bits of advice.

[1]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[2]  Vikraman Arvind,et al.  On pseudorandomness and resource-bounded measure , 2001, Theor. Comput. Sci..

[3]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[4]  Oded Goldreich,et al.  Another proof that BPP subseteq PH (and more) , 1997, Electron. Colloquium Comput. Complex..

[5]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[6]  Osamu Watanabe,et al.  On Proving Circuit Lower Bounds against the Polynomial-Time Hierarchy , 2004, SIAM J. Comput..

[7]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[8]  Rahul Santhanam,et al.  Circuit lower bounds for Merlin-Arthur classes , 2007, STOC '07.

[9]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[10]  Scott Aaronson,et al.  Oracles are subtle but not malicious , 2005, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[11]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[12]  Lance Fortnow,et al.  Hierarchy theorems for probabilistic polynomial time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Avi Wigderson,et al.  Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.

[14]  Luca Trevisan,et al.  From logarithmic advice to single-bit advice , 2004, Electron. Colloquium Comput. Complex..

[15]  Luca Trevisan,et al.  On worst-case to average-case reductions for NP problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[16]  Osamu Watanabe,et al.  New Collapse Consequences of NP Having Small Circuits , 1995, ICALP.

[17]  J. Cai,et al.  S^p _2 \subseteq ZPP^{NP} , 2001, FOCS 2001.

[18]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1992, JACM.

[19]  Emanuele Viola,et al.  The complexity of constructing pseudorandom generators from hard functions , 2005, computational complexity.

[20]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[21]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[22]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[23]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[24]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[25]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[26]  Sampath Kannan,et al.  Oracles and Queries That Are Sufficient for Exact Learning , 1996, J. Comput. Syst. Sci..

[27]  Nikolai K. Vereshchagin On The Power of PP , 1992, Computational Complexity Conference.

[28]  Joan Feigenbaum,et al.  Random-Self-Reducibility of Complete Sets , 1993, SIAM J. Comput..

[29]  Ryan O'Donnell,et al.  Hardness amplification within NP , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[30]  Lance Fortnow,et al.  Nonrelativizing separations , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[31]  Dieter van Melkebeek,et al.  Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses , 2002, SIAM J. Comput..

[32]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[33]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[34]  N. K. Vereschchagin On the power of PP , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[35]  Seinosuke Toda On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.

[36]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[37]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[38]  Ravi Kannan,et al.  Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets , 1982, Inf. Control..

[39]  Luca Trevisan,et al.  Pseudorandomness and average-case complexity via uniform reductions , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[40]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[41]  V. Arvind,et al.  On Resource-Bounded Measure and Pseudorandomness , 1997, FSTTCS.

[42]  Journal of the Association for Computing Machinery , 1961, Nature.

[43]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[44]  Alexander Russell,et al.  Symmetric alternation captures BPP , 1998, computational complexity.

[45]  Oscar H. Ibarra,et al.  Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs , 1983, JACM.

[46]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[47]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[48]  José L. Balcázar,et al.  Structural complexity 1 , 1988 .

[49]  N. V. Vinodchandran A note on the circuit complexity of PP , 2005, Theor. Comput. Sci..

[50]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[51]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[52]  Boaz Barak,et al.  A Probabilistic-Time Hierarchy Theorem for "Slightly Non-uniform" Algorithms , 2002, RANDOM.

[53]  José L. Balcázar,et al.  Structural complexity 2 , 1990 .