Revisiting the formative works on the moving contact line to connect and compare modern theories

The motion of a contact line is examined, and comparisons drawn, for a variety of models proposed in the literature. Pressure and stress behaviours at the contact line are examined in the prototype system of quasistatic spreading of a thin two-dimensional droplet on a planar substrate. The models analysed include three disjoining pressure models based on van der Waals interactions, a model introduced for polar fluids, and a liquid–gas diffuse-interface model; Navier-slip and two non-linear slip models are investigated, with three microscopic contact angle boundary conditions imposed (two of these contact angle conditions having a contact line velocity dependence); and the interface formation model is also considered. In certain parameter regimes it is shown that all of the models predict the same quasistatic droplet spreading behaviour.

[1]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[2]  G. Pavliotis,et al.  General dynamical density functional theory for classical fluids. , 2012, Physical review letters.

[3]  C. Ngan,et al.  The moving contact line with a 180° advancing contact angle , 1984 .

[4]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[5]  M. Fermigier,et al.  An experimental investigation of the dynamic contact angle in liquid-liquid systems , 1991 .

[6]  U. Thiele,et al.  Thin Films of Soft Matter , 2007 .

[7]  L. Schwartz,et al.  Contact‐line motion of shear‐thinning liquids , 1994 .

[8]  Serafim Kalliadasis,et al.  Droplet spreading on chemically heterogeneous substrates. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[10]  Garoff,et al.  Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles. , 1996, Journal of colloid and interface science.

[11]  S. H. Davis,et al.  On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.

[12]  S. Jakirlic,et al.  Dynamic contact angle of spreading droplets: Experiments and simulations , 2005 .

[13]  L. M. Hocking THE SPREADING OF A THIN DROP BY GRAVITY AND CAPILLARITY , 1983 .

[14]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[15]  R. G. Cox Inertial and viscous effects on dynamic contact angles , 1998, Journal of Fluid Mechanics.

[16]  Yulii D. Shikhmurzaev,et al.  The moving contact line on a smooth solid surface , 1993 .

[17]  L. M. Hocking Rival contact-angle models and the spreading of drops , 1992, Journal of Fluid Mechanics.

[18]  P. Petrov,et al.  A combined molecular-hydrodynamic approach to wetting kinetics , 1992 .

[19]  Zhou,et al.  Immiscible-fluid displacement: Contact-line dynamics and the velocity-dependent capillary pressure. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  J. King,et al.  Moving boundary problems and non-uniqueness for the thin film equation , 2001, European Journal of Applied Mathematics.

[21]  Y. Shikhmurzaev Capillary Flows with Forming Interfaces , 2007 .

[22]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[23]  J. Li,et al.  Numerical simulation of moving contact line problems using a volume-of-fluid method , 2001 .

[24]  P. Spelt,et al.  Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation , 2013, Journal of Fluid Mechanics.

[25]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow , 1986, Journal of Fluid Mechanics.

[26]  S. Kalliadasis,et al.  Dynamics of moving contact lines: A comparison between slip and precursor film models , 2011 .

[27]  V. Ajaev Spreading of thin volatile liquid droplets on uniformly heated surfaces , 2005, Journal of Fluid Mechanics.

[28]  G. Pavliotis,et al.  Contact lines over random topographical substrates. Part 2. Dynamics , 2011, Journal of Fluid Mechanics.

[29]  B. Andreotti,et al.  Moving Contact Lines: Scales, Regimes, and Dynamical Transitions , 2013 .

[30]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[31]  N. Hadjiconstantinou,et al.  A molecular view of Tanner's law: molecular dynamics simulations of droplet spreading , 2003, Journal of Fluid Mechanics.

[32]  R. Hoffman A study of the advancing interface. I. Interface shape in liquid—gas systems , 1975 .

[33]  J M Yeomans,et al.  Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[34]  S. Kalliadasis,et al.  Droplet motion on inclined heterogeneous substrates , 2013, Journal of Fluid Mechanics.

[35]  Lorenzo Giacomelli,et al.  Droplet spreading: intermediate scaling law by PDE methods , 2002 .

[36]  U. Thiele Note on thin film equations for solutions and suspensions , 2011 .

[37]  Thomas P. Witelski,et al.  Lubrication Models with Small to Large Slip Lengths , 2005 .

[38]  Peter Ehrhard,et al.  Non-isothermal spreading of liquid drops on horizontal plates , 1991, Journal of Fluid Mechanics.

[39]  Jens Eggers,et al.  Toward a description of contact line motion at higher capillary numbers , 2004 .

[40]  Derek Thompson,et al.  Ceramics: Tough cookery , 1997, Nature.

[41]  A. Dupuis,et al.  The collapse transition on superhydrophobic surfaces , 2008, 0803.1564.

[42]  L. Pismen,et al.  Nonlocal diffuse interface theory of thin films and the moving contact line. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  George Gabriel Stokes,et al.  Mathematical and Physical Papers vol.1: On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids , 2009 .

[44]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[45]  S. Kalliadasis,et al.  Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system , 2012, 1207.1998.

[46]  Howard A. Stone,et al.  Microfluidics: The no-slip boundary condition , 2005, cond-mat/0501557.

[47]  S. Kalliadasis,et al.  Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  S. H. Davis,et al.  Hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line. , 2013, Physical review letters.

[49]  S. Kalliadasis,et al.  Equilibrium gas–liquid–solid contact angle from density-functional theory , 2010, Journal of Fluid Mechanics.

[50]  Qingfang Wu,et al.  A slope-dependent disjoining pressure for non-zero contact angles , 2004, Journal of Fluid Mechanics.

[51]  R. Cerro,et al.  Surface forces and inertial effects on moving contact lines , 2007 .

[52]  Eli Ruckenstein,et al.  Slip velocity during wetting of solids , 1977 .

[53]  L. Schwartz,et al.  Simulation of Droplet Motion on Low-Energy and Heterogeneous Surfaces , 1998 .

[54]  L. M. Hocking A moving fluid interface. Part 2. The removal of the force singularity by a slip flow , 1977, Journal of Fluid Mechanics.

[55]  Pomeau,et al.  Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  R. Craster,et al.  Dynamics and stability of thin liquid films , 2009 .

[57]  Brian Duffy,et al.  A third-order differential equation arising in thin-film flows and relevant to Tanner's Law , 1997 .

[58]  Markus Schmuck,et al.  Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  S. Kalliadasis,et al.  Influence of gravity on the spreading of two-dimensional droplets over topographical substrates , 2012 .

[60]  Jens Eggers,et al.  Contact line motion for partially wetting fluids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Roland Hunt,et al.  The rate of spreading in spin coating , 2000, Journal of Fluid Mechanics.

[62]  Ashutosh Sharma Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems , 1993 .

[63]  L. Pismen Mesoscopic hydrodynamics of contact line motion , 2002 .

[64]  L. M. Hocking The wetting of a plane surface by a fluid , 1995 .

[65]  G. Pavliotis,et al.  Two-dimensional droplet spreading over random topographical substrates. , 2010 .

[66]  L. Pismen,et al.  Solvability condition for the moving contact line. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[68]  Serafim Kalliadasis,et al.  Disorder-induced hysteresis and nonlocality of contact line motion in chemically heterogeneous microchannels , 2012 .

[69]  Pierre Seppecher,et al.  Moving contact lines in the Cahn-Hilliard theory , 1996 .

[70]  D. Bonn,et al.  Wetting and Spreading , 2009 .

[71]  Serafim Kalliadasis,et al.  The contact line behaviour of solid-liquid-gas diffuse-interface models , 2013, 1310.1255.

[72]  L. Scriven,et al.  Hydrodynamic Model of Steady Movement of a Solid / Liquid / Fluid Contact Line , 1971 .

[73]  Stephen H. Davis,et al.  Nonlinear theory of film rupture , 1982 .

[74]  S. Herminghaus,et al.  Driven large contact angle droplets on chemically heterogeneous substrates , 2012 .

[75]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[76]  P. Gennes Wetting: statics and dynamics , 1985 .

[77]  Serafim Kalliadasis,et al.  On the moving contact line singularity: Asymptotics of a diffuse-interface model , 2012, The European physical journal. E, Soft matter.

[78]  Y. Pomeau,et al.  Sliding drops in the diffuse interface model coupled to hydrodynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Ping Sheng,et al.  Molecular scale contact line hydrodynamics of immiscible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Yulii D. Shikhmurzaev Some dry facts about dynamic wetting , 2011 .

[81]  T. Blake The physics of moving wetting lines. , 2006, Journal of colloid and interface science.

[82]  Hang Ding,et al.  Numerical Simulations of Flows with Moving Contact Lines , 2014 .

[83]  A. Bertozzi THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS , 1998 .

[84]  Michael J. Miksis,et al.  The effect of the contact line on droplet spreading , 1991, Journal of Fluid Mechanics.

[85]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[86]  H. P. Greenspan,et al.  On the motion of a small viscous droplet that wets a surface , 1978, Journal of Fluid Mechanics.

[87]  E. Benilov,et al.  Contact lines with a $18{0}^{\circ } $ contact angle , 2013, Journal of Fluid Mechanics.