The combinatorial inverse eigenvalue problem II: all cases for small graphs

Abstract. Let G be a simple undirected graph on n vertices and let S(G) be the class of real symmetric n × n matrices whose nonzero off-diagonal entries correspond to the edges of G. Given 2n − 1 real numbers λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ λn−1 ≥ μn−1 ≥ λn, and a vertex v of G, the question is addressed of whether or not there exists A ∈ S(G) with eigenvalues λ1, . . . , λn such that A(v) has eigenvalues μ1, . . . , μn−1, where A(v) denotes the matrix with vth row and column deleted. A complete solution can be given for the path on n vertices with v a pendant vertex and also for the star on n vertices with v the dominating vertex. The main result is a complete solution to this "λ, μ" problem for all connected graphs on 4 vertices.

[1]  Ole H. Hald,et al.  Inverse eigenvalue problems for Jacobi matrices , 1976 .

[2]  Bryan L. Shader,et al.  Construction of matrices with a given graph and prescribed interlaced spectral data , 2013 .

[3]  Charles R. Johnson,et al.  Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars , 2003 .

[4]  Rosário Fernandes On the inverse eigenvalue problems: the case of superstars , 2009 .

[5]  Tianyi Yang,et al.  The combinatorial inverse eigenvalue problems: complete graphs and small graphs with strict inequality , 2013 .

[6]  Hein van der Holst,et al.  Graphs whose positive semi-definite matrices have nullity at most two , 2003 .

[7]  António Leal Duarte Construction of acyclic matrices from spectral data , 1989 .

[8]  Darrell Schmidt,et al.  EIGENVALUES OF TRIDIAGONAL PSEUDO-TOEPLITZ MATRICES , 1999 .

[9]  Harry Hochstadt,et al.  On the construction of a Jacobi matrix from spectral data , 1974 .

[10]  Motke Porat,et al.  Construction of a Jacobi Matrix from Spectral Data , 2011 .

[11]  G. Golub,et al.  A survey of matrix inverse eigenvalue problems , 1986 .

[12]  Wasin So,et al.  Rank one perturbation and its application to the laplacian spectrum of a graph , 1999 .

[13]  P. Nylen,et al.  Minimum-rank matrices with prescribed graph , 1996 .

[14]  W. Barrett,et al.  THE INVERSE EIGENVALUE AND INERTIA PROBLEMS FOR MINIMUM RANK TWO GRAPHS , 2011 .

[15]  L. Mirsky,et al.  Matrices with Prescribed Characteristic Roots and Diagonal Elements , 1958 .

[16]  Shaun M. Fallat,et al.  ON TWO CONJECTURES REGARDING AN INVERSE EIGENVALUE PROBLEM FOR ACYCLIC SYMMETRIC MATRICES , 2004 .