Galaxies in the act of quenching star formation

Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III]5007/Halpha ratio and searching for galaxies with undetected [O III]. Using a sample of ~174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 < z < 0.21,we identify the ~300 quenching galaxy best candidates with low [O III]/Halpha, out of ~26000 galaxies without [O III] emission. They have masses between 10^9.7 and 10^10.8 Mo, consistently with the corresponding growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (~0.58% of the star-forming population), leading to a short quenching timescale of tQ~50Myr and an e-folding time for the quenching history of tauQ~90Myr, and their upper limits of tQ<0.76 Gyr and tauQ<1.5Gyr, assuming as quenching galaxies 50% of objects without [O III] (~7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

[1]  University of Wales,et al.  The Effects of Environment on the Evolution of the Galaxy Stellar Mass Function , 2018, 1801.04934.

[2]  Daniel Thomas,et al.  SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA , 2017, 1710.08610.

[3]  Caltech,et al.  The SAMI Galaxy Survey: Data Release One with emission-line physics value-added products , 2017, 1707.08402.

[4]  Ben Forrest,et al.  Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 , 2017, 1706.03780.

[5]  J. Prochaska,et al.  Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy , 2017, 1705.03891.

[6]  A. Cimatti,et al.  A methodology to select galaxies just after the quenching of star formation , 2017, 1704.05462.

[7]  R. Bender,et al.  Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ∼ 1–2 , 2016, 1611.07524.

[8]  J. Tinker,et al.  Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe , 2016, 1609.04398.

[9]  M. Bershady,et al.  SDSS IV MaNGA - the spatially resolved transition from star formation to quiescence , 2016, 1609.01737.

[10]  O. I. Wong,et al.  Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies , 2016, 1609.00023.

[11]  F. Fraternali,et al.  Efficiency of gas cooling and accretion at the disc-corona interface , 2016, 1608.06290.

[12]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS , 2016, 1607.06770.

[13]  A. Cimatti,et al.  Inferring the star formation histories of the most massive and passive early-type galaxies at z<0.3 , 2016, 1604.07826.

[14]  V. Springel,et al.  Simulations of ram-pressure stripping in galaxy-cluster interactions , 2016, 1604.05193.

[15]  C. Conroy,et al.  PIXEL COLOR MAGNITUDE DIAGRAMS FOR SEMI-RESOLVED STELLAR POPULATIONS: THE STAR FORMATION HISTORY OF REGIONS WITHIN THE DISK AND BULGE OF M31 , 2016, 1602.05580.

[16]  Austria,et al.  CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment , 2016, 1602.00686.

[17]  F. Fraternali,et al.  Accretion, radial flows and abundance gradients in spiral galaxies , 2015, 1510.04289.

[18]  R. Maiolino,et al.  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[19]  A. Babul,et al.  DIFFUSE CORONAE IN COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES , 2015, 1504.04620.

[20]  G. Zamorani,et al.  Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang , 2015, Science.

[21]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[22]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[23]  S. Salim Green Valley Galaxies , 2014, 1501.01963.

[24]  Remko Stuik,et al.  Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope , 2014, Astronomical Telescopes and Instrumentation.

[25]  J. Trump,et al.  ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS–METALLICITY RELATION UP TO REDSHIFT z ∼ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION , 2014, 1403.6832.

[26]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[27]  M. Gramann,et al.  Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation , 2014, 1402.1350.

[28]  A. Cimatti,et al.  ACTIVE GALACTIC NUCLEUS FEEDBACK AT z ∼ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES , 2013, 1311.4401.

[29]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[30]  C. Leitherer,et al.  MODELING TRACERS OF YOUNG STELLAR POPULATION AGE IN STAR-FORMING GALAXIES , 2013, 1311.1202.

[31]  U. Michigan,et al.  A new population of recently quenched elliptical galaxies in the SDSS , 2013, 1308.0054.

[32]  J. Dunlop,et al.  A PUBLIC Ks-SELECTED CATALOG IN THE COSMOS/UltraVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS, , 2013, 1303.4410.

[33]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[34]  M. Blanton,et al.  PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.

[35]  L. Simard,et al.  Towards a physical picture of star formation quenching: the photometric properties of recently quenched galaxies in the Sloan Digital Sky Survey , 2012, 1211.6115.

[36]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[37]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[38]  J. Ostriker,et al.  FORMING EARLY-TYPE GALAXIES IN ΛCDM SIMULATIONS. I. ASSEMBLY HISTORIES , 2012, 1202.3441.

[39]  B. Garilli,et al.  Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers , 2012, 1201.3609.

[40]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[41]  H. Rix,et al.  A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROM z ∼ 1 TO z = 0: DENSITY EVOLVES BUT SHAPES DO NOT , 2011, 1108.6086.

[42]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[43]  M. Carollo,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS , 2011, 1106.2546.

[44]  J. Moustakas,et al.  AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2 , 2011, 1101.3353.

[45]  C. Conselice,et al.  A deep probe of the galaxy stellar mass functions at z ∼ 1―3 with the GOODS NICMOS Survey , 2011, 1101.2867.

[46]  M. Raddick,et al.  THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III , 2011, 1101.1559.

[47]  O. Ilbert,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[48]  Marc Huertas-Company,et al.  Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification , 2010, 1010.3018.

[49]  S. Kaviraj Recent star formation in local, morphologically disturbed spheroidal galaxies on the optical red sequence , 2010, 1007.4810.

[50]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[51]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[52]  K. Glazebrook,et al.  Erratum: The local star formation rate density: assessing calibrations using [O ii], Hα and UV luminosities , 2010, 1002.3172.

[53]  C. Lintott,et al.  GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES , 2010, 1001.3141.

[54]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[55]  G. Brammer,et al.  THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5 , 2009, 0910.2227.

[56]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[57]  K. Bekki Ram-pressure stripping of halo gas in disc galaxies: implications for galactic star formation in different environments , 2009, 0907.4409.

[58]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[59]  S. Bamford,et al.  The Relation between Star Formation, Morphology, and Local Density in High-Redshift Clusters and Groups , 2008, 0805.1145.

[60]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z $\mathsf{\sim2}$ - III. The emergence of the color bimodality at z $\mathsf{\sim2}$ , 2008, 0804.1064.

[61]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[62]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[63]  A. Dekel,et al.  Gravitational quenching in massive galaxies and clusters by clumpy accretion , 2007, 0707.1214.

[64]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[65]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[66]  A. Szalay,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence , 2007, astro-ph/0703281.

[67]  G. Kauffmann,et al.  Modelling and interpreting the dependence of clustering on the spectral energy distributions of galaxies , 2007, astro-ph/0701682.

[68]  J. Dunlop,et al.  The evolution of the near-infrared galaxy luminosity function and colour bimodality up to z = 2 from the UKIDSS Ultra Deep Survey Early Data Release , 2006, astro-ph/0609287.

[69]  R. Maiolino,et al.  Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.

[70]  B. Garilli,et al.  The VIMOS VLT Deep Survey: The build-up of the colour-density relation , 2006, astro-ph/0603202.

[71]  M. Blanton Galaxies in SDSS and DEEP2: A Quiet Life on the Blue Sequence? , 2005, astro-ph/0512127.

[72]  J. Binney,et al.  A dynamical model for the extraplanar gas in spiral galaxies , 2005, astro-ph/0511334.

[73]  M. Bureau,et al.  The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies , 2005, astro-ph/0511307.

[74]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[75]  S. Khochfar,et al.  Properties of Early-Type, Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies , 2005, astro-ph/0509667.

[76]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[77]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[78]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[79]  T. Goto 266 E+A galaxies selected from the Sloan Digital Sky Survey Data Release 2: the origin of E+A galaxies , 2005, astro-ph/0503088.

[80]  L. Kewley,et al.  Aperture Effects on Star Formation Rate, Metallicity, and Reddening , 2005, astro-ph/0501229.

[81]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[82]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[83]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[84]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[85]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[86]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[87]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[88]  S. Okamura,et al.  A Comparison of the Galaxy Populations in the Coma and Distant Clusters: The Evolution of k+a Galaxies and the Role of the Intracluster Medium , 2003, astro-ph/0309449.

[89]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[90]  J. Brinkmann,et al.  Selection and Photometric Properties of K+A Galaxies , 2003, astro-ph/0307074.

[91]  R. Nichol,et al.  Star Formation Rate Indicators in the Sloan Digital Sky Survey , 2003, astro-ph/0306621.

[92]  J. Kneib,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius , 2003, astro-ph/0303267.

[93]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[94]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[95]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[96]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[97]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[98]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[99]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[100]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[101]  Bower,et al.  Gone with the wind: the origin of S0 galaxies in clusters , 2000, Science.

[102]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[103]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[104]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[105]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[106]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[107]  N. Vogt,et al.  The Nature of Compact Galaxies in the Hubble Deep Field. II. Spectroscopic Properties and Implications for the Evolution of the Star Formation Rate Density of the Universe , 1997, astro-ph/9704001.

[108]  A. Fabian,et al.  Active Galactic Nuclei , 1997 .

[109]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[110]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[111]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .

[112]  P. Shapiro,et al.  Consequences of a New Hot Component of the Interstellar Medium , 1976 .

[113]  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[114]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[115]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[116]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[117]  Rida T. Farouki,et al.  Computer simulations of environmental influences on galaxy evolution in dense clusters. II. rapid tidal encounters , 1981 .

[118]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[119]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[120]  G. Illingworth,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETECTION OF A RED SEQUENCE OF MASSIVE FIELD GALAXIES AT Z ∼ 2.3 AND ITS EVOLUTION TO Z ∼ 0 1 , 2022 .

[121]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .