Resistivity and Thermal Expansion (4.2–820 K) of Skutterudites after Severe Plastic Deformation via HPT

[1]  E. Bauer,et al.  Half-Heusler alloys: Enhancement of ZT after severe plastic deformation (ultra-low thermal conductivity) , 2020 .

[2]  P. Rogl,et al.  The Effect of Severe Plastic Deformation on Thermoelectric Performance of Skutterudites, Half-Heuslers and Bi-Tellurides , 2019, MATERIALS TRANSACTIONS.

[3]  K. Yubuta,et al.  Sustainable and Simple Processing Technique for N-Type Skutterudites with High ZT and Their Analysis , 2019, Acta Materialia.

[4]  G. Rogl,et al.  Direct SPD-processing to achieve high-ZT skutterudites , 2018, Acta Materialia.

[5]  J. Qiang,et al.  Effect of high-pressure torsion on the microstructure and thermoelectric properties of Fe2VAl-based compounds , 2018, Journal of Applied Physics.

[6]  N. Peranio,et al.  New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X = Ge, Sn) reaching ZT > 1.3 , 2015, 1702.04498.

[7]  E. Bauer,et al.  Changes in microstructure and physical properties of skutterudites after severe plastic deformation. , 2015, Physical chemistry chemical physics : PCCP.

[8]  E. Bauer,et al.  Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively , 2014 .

[9]  S. Suwas,et al.  Effect of High-Pressure Torsion on Texture, Microstructure, and Raman Spectroscopy: Case Study of Fe- and Te-Substituted CoSb3 , 2014, Journal of Electronic Materials.

[10]  A. Grytsiv,et al.  n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 , 2014 .

[11]  O. Kraft,et al.  Following the deformation behavior of nanocrystalline Pd films on polyimide substrates using in situ synchrotron XRD , 2013 .

[12]  E. Bauer,et al.  Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12 , 2013 .

[13]  S. Suwas,et al.  Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites , 2013 .

[14]  E. Bauer,et al.  Severe Plastic Deformation, A Tool to Enhance Thermoelectric Performance , 2013 .

[15]  W. Schranz,et al.  Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12 , 2012 .

[16]  E. Bauer,et al.  High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation , 2012 .

[17]  P. Rogl,et al.  Mechanical Properties of Skutterudites , 2011 .

[18]  E. Bauer,et al.  Compositional dependence of the thermoelectric properties of (SrxBaxYb1 − 2x)yCo4Sb12 skutterudites , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  G. S. Martynková,et al.  Effect of Nanofillers Dispersion in Polymer Matrices: A Review , 2011 .

[20]  E. Schafler Strength response upon pressure release after high pressure torsion deformation , 2011 .

[21]  E. Bauer,et al.  Impact of Ball Milling and High-Pressure Torsion on the Microstructure and Thermoelectric Properties of p- and n-Type Sb-Based Skutterudites , 2010 .

[22]  W. Schranz,et al.  Thermal expansion of thermoelectric type-I-clathrates , 2010 .

[23]  E. Bauer,et al.  Impact of high pressure torsion on the microstructure and physical properties of Pr0.67Fe3CoSb12, Pr0.71Fe3.5Ni0.5Sb12, and Ba0.06Co4Sb12 , 2010 .

[24]  M. B. Maple,et al.  Thermal expansion of skutterudites , 2010 .

[25]  A. Grytsiv,et al.  Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12 , 2010 .

[26]  J. Gubicza,et al.  Microstructure of Bulk Nanomaterials Determined by X-Ray Line Profile Analysis , 2009 .

[27]  Mukherjee,et al.  Thermal expansion study of ordered and disordered Fe3Al: An effective approach for the determination of vibrational entropy. , 1996, Physical review letters.