Subspace-Based Adaptive Method for Estimating Direction-of-Arrival With Luenberger Observer

In this paper, we propose a computationally simple and efficient subspace-based adaptive method for estimating directions-of-arrival (AMEND) for multiple coherent narrowband signals impinging on a uniform linear array (ULA), where the previously proposed QR-based method is modified for the number determination, a new recursive least-squares (RLS) algorithm is proposed for null space updating, and a dynamic model and the Luenberger state observer are employed to solve the estimate association of directions automatically. The statistical performance of the RLS algorithm in stationary environment is analyzed in the mean and mean-squares senses, and the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. Furthermore, an analytical study of the RLS algorithm is carried out to quantitatively compare the performance between the RLS and least-mean-square (LMS) algorithms in the steady-state. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.

[1]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[2]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[3]  D. Luenberger An introduction to observers , 1971 .

[4]  Yaakov Bar-Shalom,et al.  Tracking methods in a multitarget environment , 1978 .

[5]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[6]  B. Anderson,et al.  Digital control of dynamic systems , 1981, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[7]  V. Umapathi Reddy,et al.  Fixed point error analysis of the normalized ladder algorithm , 1982, ICASSP.

[8]  Chaw-Bing Chang,et al.  Application of state estimation to target tracking , 1984 .

[9]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[11]  S. H. Ardalan,et al.  Fixed-point roundoff error analysis of the exponentially windowed RLS algorithm for time-varying systems , 1987, IEEE Trans. Acoust. Speech Signal Process..

[12]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[13]  Y. Bar-Shalom Tracking and data association , 1988 .

[14]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[16]  P. Gutman,et al.  Tracking targets using adaptive Kalman filtering , 1990 .

[17]  S. Thomas Alexander,et al.  Statistical analysis of initialization methods for RLS adaptive filters , 1991, IEEE Trans. Signal Process..

[18]  Marwan A. Simaan,et al.  An efficient algorithm for tracking the angles of arrival of moving targets , 1991, IEEE Trans. Signal Process..

[19]  K. Lo,et al.  An improved multiple target angle tracking algorithm , 1992 .

[20]  L. Zhang,et al.  Multiple target angle tracking using sensor array outputs , 1993 .

[21]  Gene H. Golub,et al.  Fast algorithms for updating signal subspaces , 1994 .

[22]  Petre Stoica,et al.  On-line subspace algorithms for tracking moving sources , 1994, IEEE Trans. Signal Process..

[23]  B. Zhou,et al.  Tracking the direction of arrival of multiple moving targets , 1994, IEEE Trans. Signal Process..

[24]  C. S. Ryu,et al.  Multiple target angle tracking algorithm using predicted angles , 1994 .

[25]  Thomas Kailath,et al.  Detection of number of sources via exploitation of centro-symmetry property , 1994, IEEE Trans. Signal Process..

[26]  Katsuhiko Ogata,et al.  Discrete-time control systems (2nd ed.) , 1995 .

[27]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[28]  Andreas Antoniou,et al.  Analysis of LMS-Newton adaptive filtering algorithms with variable convergence factor , 1995, IEEE Trans. Signal Process..

[29]  Messaoud Benidir,et al.  The propagator method for source bearing estimation , 1995, Signal Process..

[30]  Rangasami L. Kashyap,et al.  Multiple target tracking using maximum likelihood principle , 1995, IEEE Trans. Signal Process..

[31]  Steve Rogers,et al.  Adaptive Filter Theory , 1996 .

[32]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[33]  Ana I. Pérez-Neira,et al.  Joint direction-of-arrival and array shape tracking for multiple moving targets , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  Henry Leung,et al.  Tracking the direction-of-arrival of multiple moving targets by passive arrays: algorithm , 1999, IEEE Trans. Signal Process..

[35]  Sylvie Marcos,et al.  An efficient PASTd-algorithm implementation for multiple direction of arrival tracking , 1999, IEEE Trans. Signal Process..

[36]  Meir Feder,et al.  Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking , 1999, IEEE Trans. Signal Process..

[37]  Dimitris G. Manolakis,et al.  Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing , 1999 .

[38]  Kristine L. Bell,et al.  A unified method for measurement and tracking of contacts from an array of sensors , 2001, IEEE Trans. Signal Process..

[39]  Tamer Basar,et al.  Analysis of Recursive Stochastic Algorithms , 2001 .

[40]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[41]  Paulo Sergio Ramirez,et al.  Fundamentals of Adaptive Filtering , 2002 .

[42]  Jingmin Xin,et al.  Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition , 2004, IEEE Transactions on Signal Processing.

[43]  A. Sano,et al.  Efficient subspace-based algorithm for adaptive bearing estimation and tracking , 2005, IEEE Transactions on Signal Processing.

[44]  Nanning Zheng,et al.  Simple and Efficient Nonparametric Method for Estimating the Number of Signals Without Eigendecomposition , 2007, IEEE Transactions on Signal Processing.

[45]  Shunjun Wu,et al.  Recursion Subspace-Based Method for Bearing Estimation , 2007, 2007 3rd International Workshop on Signal Design and Its Applications in Communications.

[46]  H. Howard Fan,et al.  Signal-Selective DOA Tracking for Wideband Cyclostationary Sources , 2007, IEEE Transactions on Signal Processing.

[47]  Nanning Zheng,et al.  On-line detection of the number of narrowband signals with a uniform linear array , 2008, 2008 16th European Signal Processing Conference.