Whither the hypercolumn?

Among the crowning achievements of Hubel and Wiesel's highly influential studies on primary visual cortex is the description of the cortical hypercolumn, a set of cortical columns with functional properties spanning a particular parameter space. This fundamental concept laid the groundwork for the notion of a modular sensory cortex, canonical cortical circuits and an understanding of visual field coverage beyond simple retinotopy. Surprisingly, the search for and description of analogous hypercolumnar organizations in other cortical areas to date has been limited. In the present work, we have applied the hypercolumn concept to the functional organization of the second visual area, V2. We found it important to separate out the original definition of the hypercolumn from other associated observations and concepts, not all of which are applicable to V2. We present results indicating that, as in V1, the V2 hypercolumns for orientation and binocular interaction (disparity) run roughly orthogonal to each other. We quantified the ‘nearest neighbour’ periodicities for the hypercolumns for ocular dominance, orientation, colour and disparity, and found a marked similarity in the periodicities of all of these hypercolumns, both across hypercolumn type and across visual areas V1 and V2. The results support an underlying common mechanism that constrains the anatomical extent of hypercolumn systems, and highlight the original definition of the cortical hypercolumn.

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[3]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[4]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[5]  Ingo Schießl,et al.  Orientation selectivity in the common marmoset (Callithrix jacchus): The periodicity of orientation columns in V1 and V2 , 2006, NeuroImage.

[6]  Jun Xiao,et al.  Hue maps in primate striate cortex , 2007, NeuroImage.

[7]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[8]  N. Swindale Cortical organization: Modules, Polymaps and mosaics , 1998, Current Biology.

[9]  B. Dow,et al.  Orientation and color columns in monkey visual cortex. , 2002, Cerebral cortex.

[10]  L. Sirovich,et al.  The organization of orientation and spatial frequency in primary visual cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[12]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[13]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[14]  N. Issa,et al.  The Representation of Complex Images in Spatial Frequency Domains of Primary Visual Cortex , 2007, The Journal of Neuroscience.

[15]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[16]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[17]  Ricardo Gattass,et al.  Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey , 2003, The Journal of Neuroscience.

[18]  Charles D. Gilbert,et al.  A hierarchy of the functional organization for color, form and disparity in primate visual area V2 , 2001, Vision Research.

[19]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[20]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[22]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  Alessandra Angelucci,et al.  Induction of visual orientation modules in auditory cortex , 2000, Nature.

[25]  N. Swindale,et al.  How many maps are there in visual cortex? , 2000, Cerebral cortex.

[26]  Stephen D. Van Hooser,et al.  Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal , 2005, The Journal of Neuroscience.

[27]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[28]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[29]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[30]  P. Kara,et al.  A micro-architecture for binocular disparity and ocular dominance in visual cortex , 2009, Nature.

[31]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[32]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[33]  A. Grinvald,et al.  The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  G. Ghose,et al.  Form processing modules in primate area V4. , 1997, Journal of neurophysiology.

[35]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[36]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[37]  Anna W. Roe,et al.  A Map for Horizontal Disparity in Monkey V2 , 2008, Neuron.

[38]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[39]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[41]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[42]  C E Schreiner,et al.  Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[45]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[46]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[47]  J. Hegdé,et al.  Temporal dynamics of shape analysis in macaque visual area V2. , 2004, Journal of neurophysiology.

[48]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Youping Xiao,et al.  V2 thin stripes contain spatially organized representations of achromatic luminance change. , 2007, Cerebral cortex.

[50]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[51]  D. Ts'o,et al.  Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. , 2002, Journal of neurophysiology.

[52]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[53]  A. Roe,et al.  Cerebral Cortex Advance Access published June 18, 2007 Functional Organization of Color Domains in V1 and V2 of Macaque Monkey Revealed by Optical Imaging , 2022 .

[54]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[55]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.