The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship.

The uniqueness of the rht-MOF platform, based on the singular (3,24)-connected net, allows for the facile design and synthesis of functionalized materials for desired applications. Here we designed a nitrogen-rich trefoil hexacarboxylate (trigonal tri-isophthalate) ligand, which serves to act as the trigonal molecular building block while concurrently coding the formation of the targeted truncated cuboctahedral supermolecular building block (in situ), and enhancing the CO(2) uptake in the resultant rht-MOF.

[1]  Holly Krutka,et al.  Evaluation of solid sorbents as a retrofit technology for CO2 capture , 2010 .

[2]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[3]  George M. Sheldrick,et al.  SADABS, Program for Empirical Absorption Correction of Area Detector Data , 1996 .

[4]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[5]  J. Rinehart,et al.  U . S . Patent , 2006 .

[6]  V. Zeleňák,et al.  Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties , 2008 .

[7]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[8]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[9]  Youssef Belmabkhout,et al.  Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions , 2009 .

[10]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[11]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[12]  Bjørnar Arstad,et al.  Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide , 2008 .

[13]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[14]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[15]  J. Butler,et al.  A new look at atmospheric carbon dioxide , 2009 .

[16]  Akihiro Yamasaki,et al.  An overview of CO2 mitigation options for global warming -Emphasizing CO2 sequestration options , 2003 .

[17]  Youssef Belmabkhout,et al.  Stabilization of amine-containing CO(2) adsorbents: dramatic effect of water vapor. , 2010, Journal of the American Chemical Society.

[18]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[19]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[20]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.