Spacecraft Multiple-Impulse Trajectory Optimization Using Differential Evolution Algorithm with Combined Mutation Strategies and Boundary-Handling Schemes

Since most spacecraft multiple-impulse trajectory optimization problems are complex multimodal problems with boundary constraint, finding the global optimal solution based on the traditional differential evolution (DE) algorithms becomes so difficult due to the deception of many local optima and the probable existence of a bias towards suboptimal solution. In order to overcome this issue and enhance the global searching ability, an improved DE algorithm with combined mutation strategies and boundary-handling schemes is proposed. In the first stage, multiple mutation strategies are utilized, and each strategy creates a mutant vector. In the second stage, multiple boundary-handling schemes are used to simultaneously address the same infeasible trial vector. Two typical spacecraft multiple-impulse trajectory optimization problems are studied and optimized using the proposed DE method. The experimental results demonstrate that the proposed DE method efficiently overcomes the problem created by the convergence to a local optimum and obtains the global optimum with a higher reliability and convergence rate compared with some other popular evolutionary methods.

[1]  P. Cage,et al.  Interplanetary trajectory optimization using a genetic algorithm , 1994 .

[2]  Steven P. Hughes,et al.  A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem , 2002 .

[3]  Panagiotis Tsiotras,et al.  Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions , 2003 .

[4]  Ossama Abdelkhalik,et al.  Dynamic-Size Multiple Populations Genetic Algorithm for Multigravity-Assist Trajectory Optimization , 2012 .

[5]  D. Izzo,et al.  Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design , 2009 .

[6]  Guo-Jin Tang,et al.  Interactive optimization approach for optimal impulsive rendezvous using primer vector and evolutionary algorithms , 2010 .

[7]  Lorenzo Casalino,et al.  Cooperative evolutionary algorithm for space trajectory optimization , 2009 .

[8]  Ruhul A. Sarker,et al.  An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems , 2013, IEEE Transactions on Industrial Informatics.

[9]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[10]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[12]  Pradipto Ghosh,et al.  Particle Swarm Optimization of Multiple-Burn Rendezvous Trajectories , 2012 .

[13]  Bernardetta Addis,et al.  A global optimization method for the design of space trajectories , 2011, Comput. Optim. Appl..

[14]  Mehmet Fatih Tasgetiren,et al.  An ensemble of differential evolution algorithms for constrained function optimization , 2010, IEEE Congress on Evolutionary Computation.

[15]  Massimiliano Vasile,et al.  A dynamical system perspective on evolutionary heuristics applied to space trajectory optimization problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[17]  Bernd Dachwald,et al.  Solar Sail Kinetic Energy Impactor Trajectory Optimization for an Asteroid-Deflection Mission , 2007 .

[18]  L. Casalino,et al.  Evolutionary optimization of interplanetary trajectories: improvements from initial diversification , 2011 .

[19]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[20]  Victoria Coverstone-Carroll,et al.  Near-Optimal Low-Thrust Trajectories via Micro-Genetic Algorithms , 1997 .

[21]  John E. Prussing,et al.  Optimal multiple-impulse time-fixed rendezvous between circular orbits , 1984 .

[22]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Guido Colasurdo,et al.  Indirect Optimization Method for Impulsive Transfers , 1994 .

[25]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[26]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[27]  Guo-Jin Tang,et al.  Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers , 2007 .

[28]  T. Huang,et al.  A hybrid boundary condition for robust particle swarm optimization , 2005, IEEE Antennas and Wireless Propagation Letters.

[29]  Bruce Conway Spacecraft Trajectory Optimization: Preface , 2010 .

[30]  Ossama Abdelkhalik,et al.  Hidden Genes Genetic Algorithm for Multi-Gravity-Assist Trajectories Optimization , 2011 .

[31]  Jin Zhang,et al.  Survey of orbital dynamics and control of space rendezvous , 2014 .

[32]  Massimiliano Vasile,et al.  An Inflationary Differential Evolution Algorithm for Space Trajectory Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[33]  Y. Rahmat-Samii,et al.  Boundary Conditions in Particle Swarm Optimization Revisited , 2007, IEEE Transactions on Antennas and Propagation.

[34]  Slawomir J. Nasuto,et al.  Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories , 2007, J. Glob. Optim..