Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes

Non-parametric estimates of the K-function and the pair correlation function play a fundamental role for exploratory and explanatory analysis of spatial and spatio-temporal point patterns. These estimates usually require information from outside of the study region, resulting to the so-called edge effects which have to be corrected. They also depend on first-order characteristics, which have to be estimated in practice. In this paper, we extend classical edge correction methods to the spatio-temporal setting and compare the performance of the related estimators for stationary/non-stationary and/or isotropic/anisotropic point patterns. Further, we explore the influence of the estimated intensity function on these estimators.

[1]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[2]  R. Häggkvist,et al.  Second-order analysis of space-time clustering , 1995, Statistical methods in medical research.

[3]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[4]  Yongtao Guan,et al.  Assessing Isotropy for Spatial Point Processes , 2006, Biometrics.

[5]  E. D. Ford,et al.  Statistical inference using the g or K point pattern spatial statistics. , 2006, Ecology.

[6]  Peter J. Diggle,et al.  On parameter estimation and goodness-of-fit testing for spatial point patterns , 1979 .

[7]  Jesper Møller,et al.  Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires , 2010 .

[8]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[9]  Victoria Zinde-Walsh,et al.  NON AND SEMI-PARAMETRIC ESTIMATION IN MODELS WITH UNKNOWN SMOOTHNESS , 2006 .

[10]  Fasheng Li,et al.  Comparison of point pattern analysis methods for classifying the spatial distributions of spruce-fir stands in the north-east USA , 2007 .

[11]  B. Ripley Modelling Spatial Patterns , 1977 .

[12]  Mehrdad Jafari-Mamaghani,et al.  Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D , 2010, Front. Neuroinform..

[13]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[14]  Ikuho Yamada,et al.  An Empirical Comparison of Edge Effect Correction Methods Applied to K -function Analysis , 2003 .

[15]  J. Illian,et al.  Ecological information from spatial patterns of plants: insights from point process theory , 2009 .

[16]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[17]  Aila Särkkä,et al.  Some edge correction methods for marked spatio-temporal point process models , 2011, Comput. Stat. Data Anal..

[18]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[19]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[20]  Mark Berman,et al.  Approximating point process likelihoods with GLIM. , 1993 .

[21]  Maggi Kelly,et al.  Characterizing spatial-temporal tree mortality patterns associated with a new forest disease , 2007 .

[22]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[23]  M LieshoutvanM.N.,et al.  Stochastic geometry : likelihood and computation , 2000 .

[24]  Peter J. Diggle,et al.  Spatio-temporal point processes , 2010 .

[25]  P J Diggle,et al.  Spatio-temporal epidemiology of Campylobacter jejuni enteritis, in an area of Northwest England, 2000–2002 , 2010, Epidemiology and Infection.

[26]  Peter J. Diggle,et al.  Analysis of Variance for Replicated Spatial Point Patterns in Clinical Neuroanatomy , 1991 .

[27]  Peter J. Diggle,et al.  stpp: An R Package for Plotting, Simulating and Analyzing Spatio-Temporal Point Patterns , 2013 .

[28]  Dietrich Stoyan,et al.  Correct testing of mark independence for marked point patterns , 2011 .

[29]  P. Haase Spatial pattern analysis in ecology based on Ripley's K-function: Introduction and methods of edge correction , 1995 .

[30]  J. Møller,et al.  Shot noise Cox processes , 2003, Advances in Applied Probability.

[31]  Dietrich Stoyan,et al.  Edge-correction needs in estimating indices of spatial forest structure , 2006 .

[32]  P. Couteron,et al.  Assessing goodness of fit of spatially inhomogeneous Poisson processes , 2001 .

[33]  Tomás Mrkvicka,et al.  Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers , 2014, Stat. Comput..

[34]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[35]  J. Ohser,et al.  On estimators for the reduced second moment measure of point processes , 1983 .

[36]  M. Prokesová INHOMOGENEITY IN SPATIAL COX POINT PROCESSES – LOCATION DEPENDENT THINNING IS NOT THE ONLY OPTION , 2010 .

[37]  P. Brown,et al.  Second‐Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data , 2007, Biometrics.

[38]  Giuseppe Arbia,et al.  Clusters of firms in an inhomogeneous space: The high-tech industries in Milan , 2012 .

[39]  David Vere-Jones,et al.  Some models and procedures for space-time point processes , 2009, Environmental and Ecological Statistics.

[40]  A. Baddeley,et al.  Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .

[41]  Peter J. Diggle,et al.  Second‐order analysis of inhomogeneous spatio‐temporal point process data , 2009 .

[42]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[43]  P. Diggle A Kernel Method for Smoothing Point Process Data , 1985 .

[44]  A. Brix,et al.  Testing Local Independence between Two Point Processes , 2001, Biometrics.

[45]  Jesper Møller,et al.  Aspects of second‐order analysis of structured inhomogeneous spatio‐temporal point processes , 2012 .

[46]  B. Ripley Statistical inference for spatial processes , 1990 .

[47]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[48]  Raphaël Pélissier,et al.  On explicit formulas of edge effect correction for Ripley's K‐function , 1999 .

[49]  Gorka Zamora-López,et al.  Cortical Hubs Form a Module for Multisensory Integration on Top of the Hierarchy of Cortical Networks , 2009, Front. Neuroinform..

[50]  Peter J. Diggle,et al.  Spatio-Temporal Point Processes: Methods and Applications , 2005 .

[51]  P. Diggle,et al.  Estimating weighted integrals of the second-order intensity of a spatial point process , 1989 .

[52]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[53]  Håkon Toftaker,et al.  Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes , 2014 .

[54]  Sani I. Doguwa On Edge‐Corrected Kernel‐Based Pair‐Correlation Function Estimators for Point Processes , 1990 .

[55]  D. Vere-Jones,et al.  Stochastic Declustering of Space-Time Earthquake Occurrences , 2002 .

[56]  A. Baddeley Spatial sampling and censoring , 2019, Stochastic Geometry.

[57]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[58]  Adrian Baddeley,et al.  Practical maximum pseudolikelihood for spatial point patterns , 1998, Advances in Applied Probability.

[59]  Alan Boyde,et al.  Analysis of a three-dimensional point pattern with replication , 1993 .