RESPACK: An ab initio tool for derivation of effective low-energy model of material

[1]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[2]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[3]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[4]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[5]  Louie,et al.  Ab initio static dielectric matrices from the density-functional approach. II. Calculation of the screening response in diamond, Si, Ge, and LiCl. , 1987, Physical review. B, Condensed matter.

[6]  Louie,et al.  Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators. , 1987, Physical review. B, Condensed matter.

[7]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[8]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[9]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  Satoshi Watanabe,et al.  First-principles study on energetics of c-BN(001) reconstructed surfaces. , 1995, Physical review. B, Condensed matter.

[12]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[13]  I. Hase,et al.  Band-width control in a perovskite-type 3d 1 correlated metal Ca1 xSrxVO3. II. Optical spectroscopy investigation. , 1998 .

[14]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[15]  Giovanni Onida,et al.  Plane-wave DFT-LDA calculation of the electronic structure and absorption spectrum of copper , 2001, cond-mat/0108535.

[16]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[17]  Yasushi Ishii,et al.  Generalization of the Iterative Perturbation Theory and Metal–Insulator Transition in Multi-Orbital Hubbard Bands , 2003 .

[18]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[19]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[20]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[21]  T.Miyazaki,et al.  Recent progress with large-scale ab initio calculations: the CONQUEST code , 2006, cond-mat/0603063.

[22]  David R. Bowler,et al.  Recent progress with large‐scale ab initio calculations: the CONQUEST code , 2006 .

[23]  D. Vanderbilt,et al.  Spectral and Fermi surface properties from Wannier interpolation , 2007, cond-mat/0702554.

[24]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[25]  Ryotaro Arita,et al.  Optical Absorption Study by Ab initio Downfolding Approach: Application to GaAs , 2008 .

[26]  Ryotaro Arita,et al.  Ab initio Derivation of Low-Energy Model for Iron-Based Superconductors LaFeAsO and LaFePO(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2008, 0806.4750.

[27]  Masatoshi Imada,et al.  Variational Monte Carlo Study of Electron Differentiation around Mott Transition , 2008, 0807.1303.

[28]  Takashi Miyake,et al.  Ab initio procedure for constructing effective models of correlated materials with entangled band structure , 2009, 0906.1344.

[29]  Ryotaro Arita,et al.  Ab initio Derivation of Low-Energy Model for κ-ET Type Organic Conductors , 2009, 0903.5409.

[30]  Nicholas D. M. Hine,et al.  Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with ONETEP , 2009, Comput. Phys. Commun..

[31]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Ryotaro Arita,et al.  Ab initio Derivation of Low-Energy Model for Alkali-Cluster-Loaded Sodalites , 2009, 0907.4593.

[33]  Takeo Fujiwara,et al.  Electronic structure of perovskite-type transition metal oxides La M O 3 ( M = Ti ∼ Cu ) by U + GW approximation , 2009 .

[34]  Taisuke Boku,et al.  A massively-parallel electronic-structure calculations based on real-space density functional theory , 2010, J. Comput. Phys..

[35]  Masatoshi Imada,et al.  Ab initio Low-Dimensional Physics Opened Up by Dimensional Downfolding: Application to LaFeAsO , 2010, 1007.4429.

[36]  Masatoshi Imada,et al.  Magnetic Properties of Ab initio Model of Iron-Based Superconductors LaFeAsO , 2010, 1006.4812.

[37]  Takashi Miyake,et al.  Comparison of Ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe , 2009, 0911.3705.

[38]  Takashi Miyake,et al.  Electronic structure calculation by first principles for strongly correlated electron systems , 2010, 1009.3851.

[39]  M I Katsnelson,et al.  Strength of effective Coulomb interactions in graphene and graphite. , 2011, Physical review letters.

[40]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[41]  Ryotaro Arita,et al.  Ab initio Derivation of Correlated Superatom Model for Potassium Loaded Zeolite A , 2011, 1111.4815.

[42]  Masatoshi Imada,et al.  Mott Transition and Phase Diagram of $\kappa$-(BEDT-TTF)2Cu(NCS)2 Studied by Two-Dimensional Model Derived from Ab initio Method , 2011, 1110.6299.

[43]  Christoph Friedrich,et al.  Effective Coulomb interaction in transition metals from constrained random-phase approximation , 2011, 1103.5593.

[44]  Yusuke Nomura,et al.  Ab initio derivation of electronic low-energy models for C 60 and aromatic compounds , 2011, 1112.3483.

[45]  Stefan Blügel,et al.  Strength of the effective Coulomb interaction at metal and insulator surfaces. , 2012, Physical review letters.

[46]  Silke Biermann,et al.  HubbardUand Hund exchangeJin transition metal oxides: Screening versus localization trends from constrained random phase approximation , 2012, 1206.3533.

[47]  K. Held,et al.  Dipole matrix element approach versus Peierls approximation for optical conductivity , 2012, 1203.5711.

[48]  Masatoshi Imada,et al.  Ab initio two-dimensional multiband low-energy models of EtMe 3 Sb[Pd(dmit) 2 ] 2 and κ-(BEDT-TTF) 2 Cu(NCS) 2 with comparisons to single-band models , 2012, 1208.3954.

[49]  R. Arita,et al.  Ab initio studies on the interplay between spin-orbit interaction and Coulomb correlation in Sr2IrO4 and Ba2IrO4. , 2012, Physical review letters.

[50]  Yusuke Nomura,et al.  Effective on-site interaction for dynamical mean-field theory , 2012, 1205.2836.

[51]  Silke Biermann,et al.  What about U on surfaces? Extended Hubbard models for adatom systems from first principles , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[53]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.

[54]  Ferdi Aryasetiawan,et al.  Ab initio calculations of the Hubbard U for the early lanthanides using the constrained random-phase approximation , 2013 .

[55]  Ryotaro Arita,et al.  GWcalculation of plasmon excitations in the quasi-one-dimensional organic compound (TMTSF)2PF6 , 2013 .

[56]  Truong Vinh Truong Duy,et al.  A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations , 2012, Comput. Phys. Commun..

[57]  Yusuke Nomura,et al.  First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations. , 2014, Physical review letters.

[58]  Truong Vinh Truong Duy,et al.  A decomposition method with minimum communication amount for parallelization of multi-dimensional FFTs , 2014, Comput. Phys. Commun..

[59]  Wenguang Zhu,et al.  Correlation effects in (111) bilayers of perovskite transition-metal oxides , 2013, 1401.0009.

[60]  Thomas Applencourt,et al.  Screened Coulomb interaction calculations: cRPA implementation and applications to dynamical screening and self-consistency in uranium dioxide and cerium , 2014, 1403.5386.

[61]  Yusuke Nomura,et al.  Ab initio G W plus cumulant calculation for isolated band systems: Application to organic conductor (TMTSF ) 2 PF 6 and transition-metal oxide SrVO 3 , 2015, 1511.00218.

[62]  Yusuke Nomura,et al.  Enhancing superconductivity in A 3 C 60 fullerides , 2016, 1606.05796.

[63]  Nomura Yusuke,et al.  Enhancing superconductivity in A3C60 fullerides , 2017 .

[64]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[65]  Silke Biermann,et al.  Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions. , 2015, Physical review letters.

[66]  Naoki Kawashima,et al.  Quantum lattice model solver HΦ , 2017, Comput. Phys. Commun..

[67]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[68]  Bernard Amadon,et al.  First-principles calculation of Coulomb interaction parameters for lanthanides: Role of self-consistence and screening processes , 2018, Physical Review B.

[69]  Masatoshi Imada,et al.  Ab initio effective Hamiltonians for cuprate superconductors , 2017, Physical Review B.

[70]  Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2 , 2019, Physical Review B.

[71]  Masatoshi Imada,et al.  Effective Hamiltonian for cuprate superconductors derived from multiscale ab initio scheme with level renormalization , 2019, Physical Review B.

[72]  Yusuke Nomura,et al.  Ab initio derivation of an effective Hamiltonian for the La2CuO4/La1.55Sr0.45CuO4 heterostructure , 2019, Physical Review B.

[73]  Satoshi Morita,et al.  mVMC - Open-source software for many-variable variational Monte Carlo method , 2017, Comput. Phys. Commun..

[74]  Mitsuaki Kawamura,et al.  FermiSurfer: Fermi-surface viewer providing multiple representation schemes , 2019, Comput. Phys. Commun..

[75]  M. Abbate,et al.  Calculated Drude weight and optical gap across the metal–insulator transition in the RVO3 series (R = Sr, Ca, La, Y) , 2019, The European Physical Journal B.

[76]  R. Arita,et al.  Materials design of dynamically stable d9 layered nickelates , 2019, Physical Review B.

[77]  K. Yoshimi,et al.  Electronic correlation and geometrical frustration in molecular solids: A systematic ab initio study of β′−X[Pd(dmit)2]2 , 2020 .

[78]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[79]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.