Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides.

[1]  C. Lowe,et al.  Optical biosensor for monitoring microbial cells. , 1994, Analytical chemistry.

[2]  F. Bier,et al.  Integrated optical immunosensor for s-triazine determination: regeneration, calibration and limitations , 1994 .

[3]  R A Williams,et al.  Covalent immobilization of protein monolayers for biosensor applications. , 1994, Biosensors & bioelectronics.

[4]  A. Bantjes,et al.  N-Hydroxysuccinimide-activated glycine-sepharose , 1993 .

[5]  F. Bier,et al.  On‐line monitoring of monoclonal antibodies in animal cell culture using a grating coupler , 1993, Biotechnology and bioengineering.

[6]  Rolf D. Schmid,et al.  Specific binding of photosynthetic reaction centres to herbicide-modified grating couplers , 1993 .

[7]  B. Liedberg,et al.  Principles of biosensing with an extended coupling matrix and surface plasmon resonance , 1993 .

[8]  W. Lukosz,et al.  Integrated optical input grating couplers as direct affinity sensors , 1993 .

[9]  A Ahluwalia,et al.  A comparative study of protein immobilization techniques for optical immunosensors. , 1992, Biosensors & bioelectronics.

[10]  H Morgan,et al.  A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. , 1992, Biosensors & bioelectronics.

[11]  S. Loefas,et al.  Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. , 1991, Analytical biochemistry.

[12]  Ingemar Lundström,et al.  Bioanalysis with surface plasmon resonance , 1991 .

[13]  B. Persson,et al.  Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins , 1991 .

[14]  W. Lukosz,et al.  Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing , 1991 .

[15]  P. Nellen,et al.  Output grating couplers on planar optical waveguides as direct immunosensors. , 1991, Biosensors & bioelectronics.

[16]  R A Durst,et al.  Liposome flow injection immunoassay: implications for sensitivity, dynamic range, and antibody regeneration. , 1990, Analytical chemistry.

[17]  D. Thomas,et al.  The Specific Immobilization of Antibody Fragments on Membrane for the Development of Multifunctional Biosensors , 1990, Annals of the New York Academy of Sciences.

[18]  Bo Johnsson,et al.  A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands , 1990 .

[19]  Green Nm,et al.  Avidin and streptavidin. , 1990 .

[20]  W. Lukosz,et al.  Sensitivity of grating couplers as integrated-optical chemical sensors , 1989 .

[21]  P. Nellen,et al.  Integrated optical input grating couplers as biochemical sensors , 1988 .

[22]  J. Huignard,et al.  Self-induced coherent oscillations with photorefractive Bi(12)SiO(20) amplifier. , 1985, Optics letters.

[23]  W. Lukosz,et al.  Integrated optical switches and gas sensors. , 1984, Optics letters.

[24]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[25]  J. Monthony,et al.  Covalent immobilization of proteins to N-hydroxysuccinimide ester derivatives of agarose. Effect of protein charge on immobilization. , 1981, Biochimica et biophysica acta.

[26]  Howard H. Weetall,et al.  [10] Covalent coupling methods for inorganic support materials , 1976 .

[27]  Ralph A. Messing,et al.  [11] Adsorption and inorganic bridge formations , 1976 .

[28]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .