Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression.

[1]  James H. Hurley,et al.  Atomistic Autophagy: The Structures of Cellular Self-Digestion , 2014, Cell.

[2]  A. Varshavsky,et al.  The N-Terminal Methionine of Cellular Proteins as a Degradation Signal , 2014, Cell.

[3]  Y. Ohsumi Historical landmarks of autophagy research , 2013, Cell Research.

[4]  Z. Ronai,et al.  Emerging roles of E3 ubiquitin ligases in autophagy. , 2013, Trends in biochemical sciences.

[5]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[6]  Bo Eun Lee,et al.  UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy , 2013, Proceedings of the National Academy of Sciences.

[7]  D. Klionsky,et al.  Receptor protein complexes are in control of autophagy , 2012, Autophagy.

[8]  H. Hakonarson,et al.  Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma , 2012, Nature Genetics.

[9]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[10]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[11]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[12]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[13]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[14]  L. Neckers,et al.  Ras, ROS and proteotoxic stress: a delicate balance. , 2011, Cancer cell.

[15]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[16]  J. Harrow,et al.  A conditional knockout resource for the genome-wide study of mouse gene function , 2011, Nature.

[17]  T. Lamark,et al.  Selective autophagy mediated by autophagic adapter proteins , 2011, Autophagy.

[18]  N. Mizushima,et al.  p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding , 2011, The Journal of cell biology.

[19]  Y. Qiu,et al.  Processing of Optineurin in Neuronal Cells* , 2010, The Journal of Biological Chemistry.

[20]  R. Xavier,et al.  Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection , 2010, The Journal of cell biology.

[21]  Z. Szallasi,et al.  An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients , 2010, Breast Cancer Research and Treatment.

[22]  Linjie Guo,et al.  The ATM–p53 pathway suppresses aneuploidy-induced tumorigenesis , 2010, Proceedings of the National Academy of Sciences.

[23]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[24]  M. Komatsu,et al.  Physiological significance of selective degradation of p62 by autophagy , 2010, FEBS letters.

[25]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[26]  R. Elliott,et al.  Optineurin Negatively Regulates the Induction of IFNβ in Response to RNA Virus Infection , 2010, PLoS pathogens.

[27]  Ivan Dikic,et al.  NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets , 2009, Autophagy.

[28]  Gyan Bhanot,et al.  Autophagy Suppresses Tumorigenesis through Elimination of p62 , 2009, Cell.

[29]  M. Diaz-Meco,et al.  p62 at the Crossroads of Autophagy, Apoptosis, and Cancer , 2009, Cell.

[30]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[31]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[32]  D. Rotin,et al.  Physiological functions of the HECT family of ubiquitin ligases , 2009, Nature Reviews Molecular Cell Biology.

[33]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[34]  R. Ghirlando,et al.  Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2 , 2009, Proceedings of the National Academy of Sciences.

[35]  Xia Zhang,et al.  The Isolation and Characterization of Murine Macrophages , 2008, Current protocols in immunology.

[36]  Aaron Ciechanover,et al.  The HECT family of E3 ubiquitin ligases: multiple players in cancer development. , 2008, Cancer cell.

[37]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[38]  P. Sorensen,et al.  The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers , 2007, Nature Medicine.

[39]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[40]  A. Ciechanover,et al.  Ubiquitin as a central cellular regulator , 2004, Cell.

[41]  M. Searle,et al.  Structure of the Ubiquitin-associated Domain of p62 (SQSTM1) and Implications for Mutations That Cause Paget's Disease of Bone* , 2003, Journal of Biological Chemistry.

[42]  Roberto Colombo,et al.  Protein carbonyl groups as biomarkers of oxidative stress. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[43]  R. Ritch,et al.  Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin , 2002, Science.

[44]  I. Fridovich,et al.  Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. , 2001, Circulation research.

[45]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[46]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[47]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[48]  G. Lyon,et al.  The N-Terminal Methionine of Cellular Proteins as a Degradation Signal , 2014 .

[49]  B. Yue,et al.  Cellular and molecular biology of optineurin. , 2012, International review of cell and molecular biology.

[50]  A. Ciechanover,et al.  The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation , 2011, Nature Reviews Molecular Cell Biology.