Modelling drying shrinkage of cement paste and mortar Part 1. Structural models from nanometres to millimetres

The nanostructure of calcium silicate hydrate (C-S-H) gel contributes to many physical properties of concrete, including the important engineering properties of creep and shrinkage. A set of structural models for this gel and computational techniques for their validation have been developed. The basic nanostructure of C-S-H is conceived as a self-similar agglomeration of spherical particles at two levels (diameters of 5 nm and 40 nm). Computational techniques are presented for simulating transmission electron microscopy images and computing sorption characteristics of the model nanostructures. Agreement with available experimental data is reasonable. The development of these nanostructural models is a first step in a multi-scale approach to computing the drying shrinkage of model cement-based materials. Such an approach will provide a better understanding of the relationships between microstructure and the shrinkage behaviour of these systems.ResumeBeaucoup de propriétés physiques du béton, y compris le fluage et le retrait à l'échelle macroscopique, dépendent de la structure à l'échelle nanométrique du gel formé par les hydrates de silicate de calcium (C-S-H). Une série de modèles structuraux du gel, ainsi que des simulations par ordinateur pour vérifier leur validité, ont été développés. La nanostructure de C-S-H est conçue comme une agglomération auto-similaire de particules sphériques à deux échelles: diamètres de 5 et 40 nm. Les techniques numériques sont développées pour simuler la transmission électronique à balayage ainsi que l'adsorption sur la structure modèle. Les simulations sont en bon accord avec les résultats expérimentaux disponibles. Le développement de ces modèles structuraux à l'échelle nanométrique est une première étape vers une approche multi-échelle visant à simuler le retrait par séchage des matériaux à base de ciment. Une telle approche fournira une meilleure compréhension des relations qui existent entre la microstructure et le comportement au retrait de ces systèmes.

[1]  H.E.J.G. Schlangen,et al.  Experimental and numerical analysis of fracture processes in concrete : proefschrift , 1993 .

[2]  R. C. Mehrotra Precursors for aerogels , 1992 .

[3]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[4]  C. Ferraris,et al.  Shrinkage mechanisms of hardened cement paste , 1987 .

[5]  Nicos Martys,et al.  Transport and diffusion in three-dimensional composite media , 1994 .

[6]  A. Allen,et al.  Small Angle Neutron Scattering Studies Of Pore And Gel Structures, Diffusivity, Permeability And Damage Effects , 1988 .

[7]  E. Garboczi,et al.  Percolation and pore structure in mortars and concrete , 1994 .

[8]  E. Garboczi,et al.  Computer simulation of the diffusivity of cement-based materials , 1992 .

[9]  A. Allen,et al.  Development of the fine porosity and gel structure of hydrating cement systems , 1987 .

[10]  Pierre M. Adler,et al.  Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation , 1993 .

[11]  Hamlin M. Jennings,et al.  Model for the Developing Microstructure in Portland Cement Pastes , 1994 .

[12]  A. Nonat Interactions between chemical evolution (hydration) and physical evolution (setting) in the case of tricalcium silicate , 1994 .

[13]  Salvatore Torquato,et al.  Bulk properties of two‐phase disordered media. I. Cluster expansion for the effective dielectric constant of dispersions of penetrable spheres , 1984 .

[14]  Elisabeth Atlass Some Moisture Sorption Properties of Silica Fume Mortar , 1992, "SP-132: Fly Ash, Silica Fume, Slag, and Natural Pozzolans and Natural Pozzolans in Concrete - Proceedings Fourth Interna".

[15]  R. Mikhail,et al.  ADSORPTION OF ORGANIC VAPORS IN RELATION TO THE PORE STRUCTURE OF HARDENED PORTLAND CEMENT PASTES , 1966 .

[16]  E. Garboczi,et al.  Interpretation of the impedance spectroscopy of cement paste via computer modelling , 1995, Journal of Materials Science.

[17]  George W. Scherer,et al.  Theory of Drying , 1990 .

[18]  Edward J. Garboczi,et al.  Percolation of phases in a three-dimensional cement paste microstructural model , 1991 .

[19]  Baroghel-Bouny,et al.  CARACTERISATION DE LA TEXTURE D'UN BETON DURCI A PARTIR DES ISOTHERMES DE SORPTION DE VAPEUR D'EAU , 1993 .

[20]  Will Hansen,et al.  Drying Shrinkage Mechanisms in Portland Cement Paste , 1987 .

[21]  Thompson,et al.  Quantitative prediction of permeability in porous rock. , 1986, Physical review. B, Condensed matter.

[22]  M. Setzer,et al.  The statistical thickness and the chemical potential of adsorbed water films , 1981 .

[23]  Véronique Baroghel-Bouny,et al.  Caractérisation microstructurale et hydrique des pâtes de ciment et des bétons ordinaires et à très hautes performances , 1994 .

[24]  Interpretation of impedance spectroscopy of cement paste via computer modelling , 1995, Journal of Materials Science.

[25]  Structural studies on hydrating cement pastes , 1993 .

[26]  H. Taylor Nanostructure of C?S?H: Current status , 1993 .

[27]  Paulo J.M. Monteiro,et al.  Concrete: A three phase material , 1993 .