Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov-chain Monte Carlo method.

Palauans are an isolated population in Micronesia with lifetime prevalence of schizophrenia (SCZD) of 2%, compared to the world rate of approximately 1%. The possible enrichment for SCZD genes, in conjunction with the potential for reduced etiological heterogeneity and the opportunity to ascertain statistically powerful extended pedigrees, makes Palauans a population of choice for the mapping of SCZD genes. We have used a Markov-chain Monte Carlo method to perform a genomewide multipoint analysis in seven extended pedigrees from Palau. Robust multipoint parametric and nonparametric linkage (NPL) analyses were performed under three nested diagnostic classifications-core, spectrum, and broad. We observed four regions of interest across the genome. Two of these regions-on chromosomes 2p13-14 (for which, under core diagnostic classification, NPL=6.5 and parametric LOD=4.8) and 13q12-22 (for which, under broad diagnostic classification, parametric LOD=3.6, and, under spectrum diagnostic classification, parametric LOD=3.5)-had evidence for linkage with genomewide significance, after correction for multiple testing; with the current pedigree resource and genotyping, these regions are estimated to be 4.3 cM and 19.75 cM in size, respectively. A third region, with intermediate evidence for linkage, was identified on chromosome 5q22-qter (for which, under broad diagnostic classification, parametric LOD=2.5). The fourth region of interest had only borderline suggestive evidence for linkage (on 3q24-28; for this region, under broad diagnostic classification, parametric LOD=2.0). All regions exhibited evidence for genetic heterogeneity. Our findings provide significant evidence for susceptibility loci on chromosomes 2p13-14 and 13q12-22 and support both a model of genetic heterogeneity and the utility of a broader set of diagnostic classifications in the population from Palau.

[1]  N J Camp,et al.  Correcting for multiple analyses in genomewide linkage studies , 2001, Annals of human genetics.

[2]  C Garner,et al.  Linkage analysis of a complex pedigree with severe bipolar disorder, using a Markov chain Monte Carlo method. , 2001, American journal of human genetics.

[3]  G Kalsi,et al.  Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. , 2001, American journal of human genetics.

[4]  M. Baron,et al.  Genetics of schizophrenia and the new millennium: progress and pitfalls. , 2001, American journal of human genetics.

[5]  M A Spence,et al.  A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  N. Camp,et al.  A Robust Multipoint Linkage Statistic (tlod) for Mapping Complex Trait Loci , 2001, Genetic epidemiology.

[7]  N. Camp,et al.  A New Nonparametric Linkage Statistic for Mapping Both Qualitative and Quantitative Trait Loci , 2001, Genetic epidemiology.

[8]  W. Berrettini,et al.  Are schizophrenic and bipolar disorders related? A review of family and molecular studies , 2000, Biological Psychiatry.

[9]  P. Holmans,et al.  Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. , 2000, American journal of human genetics.

[10]  L. Delisi Abstracts of Presentations: Eighth World Congress on Psychiatric Genetics, Versailles, France , 2000 .

[11]  Alun Thomas,et al.  Multilocus linkage analysis by blocked Gibbs sampling , 2000, Stat. Comput..

[12]  H. Coon,et al.  Mutation screening of a neutral amino acid transporter, ASCT1, and its potential role in schizophrenia. , 2000, Psychiatric Genetics.

[13]  W. Honer,et al.  Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. , 2000, Science.

[14]  H H Göring,et al.  Linkage analysis in the presence of errors I: complex-valued recombination fractions and complex phenotypes. , 2000, American journal of human genetics.

[15]  Mario Pirastu,et al.  Population choice in mapping genes for complex diseases , 1999, Nature Genetics.

[16]  W. Honer,et al.  Linkage of familial schizophrenia to chromosome 13q32. , 1999, American journal of human genetics.

[17]  H. Coon,et al.  Genetic epidemiological study of schizophrenia in Palau, Micronesia: prevalence and familiality. , 1999, American journal of medical genetics.

[18]  V. Vieland,et al.  Further evidence for the increased power of LOD scores compared with nonparametric methods. , 1999, American journal of human genetics.

[19]  H. Coon,et al.  Evidence for a chromosome 2p13–14 schizophrenia susceptibility locus in families from Palau, Micronesia , 1998, Molecular Psychiatry.

[20]  T. Crow,et al.  A genome-wide search for schizophrenia susceptibility genes. , 1998, American journal of medical genetics.

[21]  C. Stefanis,et al.  Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21 , 1998, Nature Genetics.

[22]  S E Hodge,et al.  The power to detect linkage in complex disease by means of simple LOD-score analyses. , 1998, American journal of human genetics.

[23]  T. Matise,et al.  Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. , 1998, American journal of medical genetics.

[24]  L Kruglyak,et al.  Genome scan of schizophrenia. , 1996, The American journal of psychiatry.

[25]  John P. Rice,et al.  Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22. , 1997, American journal of medical genetics.

[26]  W. Maier,et al.  Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis , 1997, Molecular Psychiatry.

[27]  R. Straub,et al.  Support for a possible schizophrenia vulnerability locus in region 5q22–31 in Irish families , 1997, Molecular Psychiatry.

[28]  R. Murray,et al.  Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations , 1997, Human Genetics.

[29]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[30]  R. Straub,et al.  Irish study on high-density schizophrenia families: field methods and power to detect linkage. , 1996, American journal of medical genetics.

[31]  J. Witte,et al.  Genetic dissection of complex traits. , 1994, Nature genetics.

[32]  R. Straub,et al.  A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity , 1995, Nature Genetics.

[33]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[34]  R. Murray,et al.  Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1‐q32 , 1995, Psychiatric genetics.

[35]  Uffe Kjærulff,et al.  Blocking Gibbs sampling in very large probabilistic expert systems , 1995, Int. J. Hum. Comput. Stud..

[36]  J. Ziegle,et al.  Evidence for a susceptibility locus for schizophrenia on chromosome 6pter–p22 , 1995, Nature Genetics.

[37]  K H Buetow,et al.  A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). , 1994, Science.

[38]  H. Coon,et al.  Genomic scan for genes predisposing to schizophrenia. , 1994, American journal of medical genetics.

[39]  Elliot S. Gershon,et al.  Genetic approaches to mental disorders , 1994 .

[40]  V. Vieland,et al.  Adequacy of single-locus approximations for linkage analyses of oligogenic traits: extension to multigenerational pedigree structures. , 1993, Human heredity.

[41]  K. Kendler,et al.  The genetics of schizophrenia: a current, genetic-epidemiologic perspective. , 1993, Schizophrenia bulletin.

[42]  G. Bernardi,et al.  The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  N Risch,et al.  Model misspecification and multipoint linkage analysis. , 1992, Human heredity.

[44]  I. Gottesman Schizophrenia Genesis: The Origins of Madness , 1990 .

[45]  N. Risch,et al.  Linkage and mode of inheritance in complex traits. , 1989, Progress in clinical and biological research.

[46]  C. Bonaïti‐pellié,et al.  Effects of misspecifying genetic parameters in lod score analysis. , 1986, Biometrics.

[47]  J. Ott Linkage probability and its approximate confidence interval under possible heterogeneity , 1986, Genetic epidemiology. Supplement.

[48]  N. Risch,et al.  Segregation analysis of schizophrenia and related disorders. , 1984, American journal of human genetics.

[49]  J. Ott,et al.  Strategies for multilocus linkage analysis in humans. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Kendler,et al.  Overview: a current perspective on twin studies of schizophrenia. , 1983, The American journal of psychiatry.

[51]  K. Davison Schizophrenia-like psychoses associated with organic cerebral disorders: a review. , 1983, Psychiatric developments.

[52]  Richard J. Haier,et al.  Schizophrenia: The epigenetic puzzle Cambridge University Press, Cambridge (1982). 258 pp. by Irving I. Gottesman and James Shields , 1982, Psychiatry Research.

[53]  M. Tsuang,et al.  Testing the Monogenic Theory of Schizophrenia , 1982, British Journal of Psychiatry.

[54]  M. Baron,et al.  Schizoaffective illness, schizophrenia and affective disorders: morbidity risk and genetic transmission , 1982, Acta Psychiatrica Scandinavica.

[55]  M. Tsuang,et al.  Subtypes of drug abuse with psychosis. Demographic characteristics, clinical features, and family history. , 1982, Archives of general psychiatry.

[56]  W. Rutter,et al.  Polymorphic DNA region adjacent to the 5' end of the human insulin gene. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L. Wetterberg,et al.  Schizophrenia in a North Swedish geographical isolate, 1900–1977. Epidemiology, genetics and biochemistry , 1978, Clinical genetics.

[58]  J. Endicott,et al.  A diagnostic interview: the schedule for affective disorders and schizophrenia. , 1978, Archives of general psychiatry.

[59]  E. Robins,et al.  Research diagnostic criteria: rationale and reliability. , 1978, Archives of general psychiatry.

[60]  R. Elston,et al.  A genetic study of schizophrenia pedigrees. II. One-locus hypotheses. , 1978, Neuropsychobiology.

[61]  R. Elston,et al.  A Genetic Study of Schizophrenia Pedigrees , 1976 .

[62]  P. Brown,et al.  BLOOD GROUP GENETIC VARIATIONS IN NATIVES OF THE CAROLINE ISLANDS AND IN OTHER PARTS OF MICRONESIA , 1965 .

[63]  M. Owen,et al.  Linkage Study of Schizophrenia Candidate Regions on Chromosomes 5 q , 6 q , 10 p , and 13 q : Schizophrenia Linkage Collaborative Group III * , 2022 .

[64]  ’. O,et al.  Refutation of the General Single-Locus Model for the Etiology of Schizophrenia , 2022 .