On the Rarefied Gas Experiments

There are limits of validity of classical constitutive laws such as Fourier and Navier-Stokes equations. Phenomena beyond those limits have been experimentally found many decades ago. However, it is still not clear what theory would be appropriate to model different non-classical phenomena under different conditions considering either the low-temperature or composite material structure. In this paper, a modeling problem of rarefied gases is addressed. The discussion covers the mass density dependence of material parameters, the scaling properties of different theories and aspects of how to model an experiment. In the following, two frameworks and their properties are presented. One of them is the kinetic theory based Rational Extended Thermodynamics; the other one is the non-equilibrium thermodynamics with internal variables and current multipliers. In order to compare these theories, an experiment on sound speed in rarefied gases at high frequencies, performed by Rhodes, is analyzed in detail. It is shown that the density dependence of material parameters could have a severe impact on modeling capabilities and influences the scaling properties.

[1]  Henning Struchtrup,et al.  Heat pulse experiments revisited , 1993 .

[2]  P. V'an,et al.  Guyer-Krumhansl–type heat conduction at room temperature , 2017, 1704.00341.

[3]  R. Tye,et al.  thermal conductivity , 2019 .

[4]  J. Ratulowski,et al.  The apparent viscosity of foams in homogeneous bead packs , 1989 .

[5]  P. Ván Heat conduction beyond Fourier ’ s Law : theoretical predictions and experimental validation , 2017 .

[6]  P. Ván,et al.  Models of Ballistic Propagation of Heat at Low Temperatures , 2015, 1506.05578.

[7]  Tamás Fülöp,et al.  Deviation from the Fourier law in room-temperature heat pulse experiments , 2015, 1506.05764.

[8]  S Chien,et al.  In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat. , 1980, Microvascular research.

[9]  David Jou,et al.  Phonon hydrodynamics and phonon-boundary scattering in nanosystems , 2009 .

[10]  H. Struchtrup Resonance in rarefied gases , 2012 .

[11]  Robert C. Dynes,et al.  Observation of second sound in bismuth , 1972 .

[12]  P'eter V'an,et al.  Second sound and ballistic heat conduction: NaF experiments revisited , 2017, 1708.09770.

[13]  A. Morro,et al.  Some remarks about dispersion and absorption of sound in monoatomic rarefied gases , 1973 .

[14]  A. Itterbeek,et al.  Measurements on the viscosity of helium gas between 293 and 1.6°K , 1938 .

[15]  Moran Wang,et al.  Phonon hydrodynamics and its applications in nanoscale heat transport , 2015 .

[16]  Arkadi Berezovski,et al.  Internal Variables in Thermoelasticity , 2017 .

[17]  Francisco J. Galindo-Rosales,et al.  An apparent viscosity function for shear thickening fluids , 2011 .

[18]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[19]  M. Greenspan Propagation of Sound in Five Monatomic Gases , 1956 .

[20]  V. Vesovic,et al.  Viscosity of liquids—Enskog-2σ model , 2014 .

[21]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[22]  H. Struchtrup Macroscopic transport equations for rarefied gas flows , 2005 .

[23]  Peter Van Weakly nonlocal irreversible thermodynamics—the Guyer–Krumhansl and the Cahn–Hilliard equations , 2001 .

[24]  Vito Antonio Cimmelli,et al.  Different Thermodynamic Theories and Different Heat Conduction Laws , 2009 .

[25]  P. Ván,et al.  Microinertia and internal variables , 2015, 1504.03485.

[26]  T. F. McNelly,et al.  Second Sound and Anharmonic Processes in Isotopically Pure Alkali-Halides , 1974 .

[27]  George Em Karniadakis,et al.  REPORT: A MODEL FOR FLOWS IN CHANNELS, PIPES, AND DUCTS AT MICRO AND NANO SCALES , 1999 .

[28]  Tommaso Ruggeri,et al.  Rational Extended Thermodynamics beyond the Monatomic Gas , 2015 .

[29]  Iu. L. Klimontovich A unified approach to kinetic description of processes in active systems , 1995 .

[30]  N. Trappeniers,et al.  The viscosity of argon at high densities , 1986 .

[31]  Gerhard M. Sessler,et al.  Schallausbreitung in Gasen bei hohen Frequenzen und sehr niedrigen Drucken , 1957 .

[32]  A. Morro,et al.  A modified Navier-Stokes equation, and its consequences on sound dispersion , 1972 .

[33]  G. Lebon,et al.  Propagation of Ultrasonic Sound-waves in Dissipative Dilute Gases and Extended Irreversible Thermodynamics , 1989 .

[34]  T. Winter,et al.  High‐Temperature Ultrasonic Measurements of Rotational Relaxation in Hydrogen, Deuterium, Nitrogen, and Oxygen , 1967 .

[35]  W. G. Pollard,et al.  On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .

[36]  A. Sellitto,et al.  Entropy flux and anomalous axial heat transport at the nanoscale , 2013 .

[37]  A. Busala,et al.  Energy Transfer by Collisions in Vapors of Chlorinated Methanes , 1955 .

[38]  A. B. Metzner Agitation of non‐Newtonian fluids , 1957 .

[39]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[40]  A. Claes,et al.  Measurements on the viscosity of hydrogen- and deuterium gas between 293°k and 14°k , 1938 .

[41]  S. Sandler,et al.  The Viscosity and Thermal Conductivity of Simple Dense Gases , 1980 .

[42]  Masoud Darbandi,et al.  Extending the Navier–Stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme , 2009 .

[43]  S. J. Rogers Transport of Heat and Approach to Second Sound in Some Isotopically Pure Alkali-Halide Crystals , 1971 .

[44]  P. V'an,et al.  Generalized heat conduction in heat pulse experiments , 2014, 1409.0313.

[45]  V. K. Michalis,et al.  Rarefaction effects on gas viscosity in the Knudsen transition regime , 2010 .

[46]  I. Gyarmati On the Wave Approach of Thermodynamics and some Problems of Non-Linear Theories , 1977 .

[47]  Application of Enskog theory on the viscosity of argon , 1986 .

[48]  Po-Hsien Lai Second Sound in Solids , 1993 .

[49]  Takashi Arima,et al.  Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics , 2013 .

[50]  J. Ross,et al.  VISCOSITY OF NITROGEN, HELIUM, HYDROGEN, AND ARGON FROM - 100 TO 25C UP TO 150-250 ATMOSPHERES , 1969 .

[51]  T. F. McNelly,et al.  Second Sound in NaF , 1970 .

[52]  W. M. Haynes Viscosity of gaseous and liquid argon , 1973 .

[53]  Daniel Bonn,et al.  Origin of apparent viscosity in yield stress fluids below yielding , 2009 .

[54]  J. Gracki,et al.  Viscosity of Nitrogen, Helium, Hydrogen, and Argon from − 100 to 25°C up to 150–250 atm , 1969 .

[55]  Mesoscopic Theories of Heat Transport in Nanosystems , 2016 .

[56]  W. T. Grandy,et al.  Kinetic theory : classical, quantum, and relativistic descriptions , 2003 .

[57]  József Verhás,et al.  Thermodynamics and Rheology , 1997 .

[58]  J. Meixner,et al.  Absorption und Dispersion des Schalles in Gasen mit chemisch reagierenden und anregbaren Komponenten. I. Teil , 1943 .

[59]  ΓΛ Ja On the Entropy Current , 1983 .

[60]  Tommaso Ruggeri,et al.  Maximum entropy principle for rarefied polyatomic gases , 2013 .

[61]  D. J. Channin,et al.  Heat Pulses in NaF: Onset of Second Sound , 1970 .

[62]  G Chen,et al.  Ballistic-diffusive heat-conduction equations. , 2001, Physical review letters.

[63]  C. Beevers,et al.  Extended thermodynamics of dense gases , 1984 .

[64]  J. Stewart A variable path ultrasonic interferometer for the four megacycle region with some measurements on air, CO2, and H2. , 1946, The Review of scientific instruments.

[65]  Takashi Arima,et al.  Extended thermodynamics of real gases with dynamic pressure: An extension of Meixnerʼs theory , 2012 .

[66]  P. Ván Theories and heat pulse experiments of non-Fourier heat conduction , 2015, 1501.04234.

[67]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[68]  J. Dymond Corrections to the Enskog theory for viscosity and thermal conductivity , 1987 .

[69]  J. E. Rhodes The Velocity of Sound in Hydrogen when Rotational Degrees of Freedom Fail to Be Excited , 1946 .

[70]  J. Beenakker,et al.  Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures. I , 1964 .

[71]  Tamás Fülöp,et al.  Emergence of Non-Fourier Hierarchies , 2018, Entropy.

[72]  C. A. T. Seldam,et al.  Density dependence of the viscosity of some noble gases , 2002 .

[73]  Luigi Preziosi,et al.  Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .

[74]  A. Itterbeek,et al.  Measurements on the viscosity of gases for low pressures at room temperature and at low temperatures , 1940 .

[75]  Robert A. Guyer,et al.  Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals , 1966 .