Assessment of the effects of DEM gridding on the predictions of basin runoff using MIKE SHE and a modelling resolution of 600 m

[1]  H. Riedwyl Goodness of Fit , 1967 .

[2]  K. Kristensen,et al.  A MODEL FOR ESTIMATING ACTUAL EVAPOTRANSPIRATION FROM POTENTIAL EVAPOTRANSPIRATION , 1975 .

[3]  L. F. Huggins,et al.  ANSWERS: A Model for Watershed Planning , 1980 .

[4]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[5]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[6]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[7]  K. Loague,et al.  Statistical and graphical methods for evaluating solute transport models: Overview and application , 1991 .

[8]  Michael F. Hutchinson,et al.  A continental hydrological assessment of a new grid-based digital elevation model of Australia , 1991 .

[9]  Jens Christian Refsgaard,et al.  Application of the SHE to catchments in India Part 2. Field experiments and simulation studies with the SHE on the Kolar subcatchment of the Narmada River , 1992 .

[10]  Robert A. Vertessy,et al.  Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model , 1993 .

[11]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[12]  D. Wolock,et al.  Effects of digital elevation model map scale and data resolution on a topography‐based watershed model , 1994 .

[13]  V. Singh,et al.  Computer Models of Watershed Hydrology , 1995 .

[14]  Duane C. Hanselman,et al.  Mastering MATLAB 5: A Comprehensive Tutorial and Reference , 1995 .

[15]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[16]  K. Beven,et al.  Toward a generalization of the TOPMODEL concepts:Topographic indices of hydrological similarity , 1996 .

[17]  J. Refsgaard,et al.  Operational Validation and Intercomparison of Different Types of Hydrological Models , 1996 .

[18]  J. Feyen,et al.  Calibration, Validation and Sensitivity Analysis of the MIKE-SHE Model Using the Neuenkirchen Catchment as Case Study , 1997 .

[19]  J. Refsgaard Parameterisation, calibration and validation of distributed hydrological models , 1997 .

[20]  Keith Beven,et al.  Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity values , 1997 .

[21]  W. O. Pruitt,et al.  Crop water requirements , 1997 .

[22]  Keith Beven,et al.  Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework , 1997 .

[23]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[24]  L. Phil Graham,et al.  On the scale problem in hydrological modelling , 1998 .

[25]  C. Jayatilaka,et al.  Simulation of water flow on irrigation bay scale with MIKE-SHE , 1998 .

[26]  Garry R. Willgoose,et al.  On the effect of digital elevation model accuracy on hydrology and geomorphology , 1999 .

[27]  Isabelle Braud,et al.  Study of the rainfall-runoff process in the Andes region using a continuous distributed model , 1999 .

[28]  D. Legates,et al.  Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation , 1999 .

[29]  Jan Seibert,et al.  Multi‐criterial validation of TOPMODEL in a mountainous catchment , 1999 .

[30]  P. Willems Probabilistic immission modelling of receiving surface waters , 2000 .

[31]  L. Feyen,et al.  Application of a distributed physically-based hydrological model to a medium size catchment , 2000 .

[32]  Stephen Wise,et al.  Assessing the quality for hydrological applications of digital elevation models derived from contours , 2000 .

[33]  Keith Beven,et al.  A dynamic TOPMODEL , 2001 .

[34]  Jan Feyen,et al.  Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework , 2002 .

[35]  Jens Christian Refsgaard,et al.  Effect of grid size on effective parameters and model performance of the MIKE‐SHE code , 2002 .

[36]  Stein Beldring,et al.  Multi-criteria validation of a precipitation–runoff model , 2002 .

[37]  J. Feyen,et al.  Assessment of the Performance of a Distributed Code in Relation to the ETp Estimates , 2002 .

[38]  Rf Vazquez,et al.  Effect of potential evapotranspiration estimates on effective parameters and performance of the MIKE SHE-code applied to a medium-size catchment , 2003 .

[39]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .

[40]  Stuart N. Lane,et al.  A network‐index‐based version of TOPMODEL for use with high‐resolution digital topographic data , 2004 .

[41]  J. Feyen,et al.  Potential Evapotranspiration for the Distributed Modeling of Belgian Catchments , 2004 .

[42]  E. Vivoni,et al.  On the effects of triangulated terrain resolution on distributed hydrologic model response , 2005 .