A review of silicon microfabricated ion traps for quantum information processing

Quantum information processing (QIP) has become a hot research topic as evidenced by S. Haroche and D. J. Wineland receiving the Nobel Prize in Physics in 2012. Various MEMS-based microfabrication methods will be a key enabling technology in implementing novel and scalable ion traps for QIP. This paper provides a brief introduction of ion trap devices, and reviews ion traps made using conventional precision machining as well as MEMS-based microfabrication. Then, microfabrication methods for ion traps are explained in detail. Finally, current research issues in microfabricated ion traps are presented. The QIP renders significant new challenges for MEMS, as various QIP technologies are being developed for secure encrypted communication and complex computing applications.

[1]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[2]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[3]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  Li Ding,et al.  Ion trap array mass analyzer: structure and performance. , 2009, Analytical chemistry.

[6]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[7]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[8]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[9]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[10]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[11]  F. Schmidt-Kaler,et al.  Transport of ions in a segmented linear Paul trap in printed-circuit-board technology , 2007, 0711.2947.

[12]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[15]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[16]  D. Griffiths Introduction to Electrodynamics , 2017 .

[17]  F. Schmidt-Kaler,et al.  Ion strings for quantum gates , 1998 .

[18]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[19]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[20]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[21]  Curtis Volin,et al.  Reliable transport through a microfabricated X-junction surface-electrode ion trap , 2012, 1210.3655.

[22]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[23]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[24]  Patrick Gill,et al.  Monolithic microfabricated ion trap chip design for scaleable quantum processors , 2006 .

[25]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[26]  Jiannis K Pachos,et al.  Quantum computation with a one-dimensional optical lattice. , 2003, Physical review letters.

[27]  S. Urabe,et al.  Design of a surface electrode trap for parallel ion strings , 2014 .

[28]  R. Cooks,et al.  Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry , 1987 .

[29]  Michel Devoret,et al.  Superconducting quantum bits , 2005 .

[30]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[31]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[34]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[35]  D. Moehring,et al.  Demonstration of a microfabricated surface electrode ion trap , 2010, 1008.0990.

[36]  Carlton M. Caves,et al.  QUANTUM LOGIC GATES IN OPTICAL LATTICES , 1999 .

[37]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[38]  L. Maleki,et al.  New ion trap for frequency standard applications , 1989 .

[39]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[40]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[41]  P. See,et al.  Fabrication of a Monolithic Array of Three Dimensional Si-based Ion Traps , 2013, Journal of Microelectromechanical Systems.

[42]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[43]  R. Feynman Simulating physics with computers , 1999 .

[44]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[45]  Janus H. Wesenberg,et al.  Electrostatics of surface-electrode ion traps , 2008, 0808.1623.

[46]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[47]  D. Aharonov Quantum Computation , 1998, quant-ph/9812037.

[48]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[49]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[50]  R. March Quadrupole ion traps. , 2009, Mass spectrometry reviews.

[51]  W. Paul,et al.  Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner , 1958 .

[52]  P. H. Hemberger,et al.  Operation of a quadrupole ion trap mass spectrometer to achieve high mass/charge ratios , 1991 .

[53]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[54]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[55]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[56]  Peter Maunz,et al.  Single qubit manipulation in a microfabricated surface electrode ion trap , 2013, 1306.1269.

[57]  Heating rates in a thin ion trap for microcavity experiments , 2012 .

[58]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[59]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[60]  I. Chuang,et al.  Surface-electrode point Paul trap , 2010, 1008.1603.

[61]  S. Baek,et al.  Trapping and cooling of 174Yb+ ions in a microfabricated surface trap , 2013 .

[62]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[63]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[64]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[65]  Curtis Volin,et al.  Demonstration of integrated microscale optics in surface-electrode ion traps , 2011, 1105.4905.

[66]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[67]  Daniel J Heinzen,et al.  Progress at NIST toward absolute frequency standards using stored ions , 1990 .

[68]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[69]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[70]  Kenneth R. Brown,et al.  Loading and characterization of a printed-circuit-board atomic ion trap , 2006, quant-ph/0603142.

[71]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[72]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[73]  Jelena Stajic,et al.  The Future of Quantum Information Processing , 2013 .

[74]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[75]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[76]  H. Häffner,et al.  Energy transport in trapped ion chains , 2013, 1312.5786.

[77]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[78]  Patrick Gill,et al.  A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. , 2012, Nature nanotechnology.

[79]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[80]  Kenneth R. Brown,et al.  Heating rates and ion-motion control in a Y-junction surface-electrode trap , 2014 .

[81]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.