Progress in numerical simulation of yield stress fluid flows

Numerical simulations of viscoplastic fluid flows have provided a better understanding of fundamental properties of yield stress fluids in many applications relevant to natural and engineering sciences. In the first part of this paper, we review the classical numerical methods for the solution of the non-smooth viscoplastic mathematical models, highlight their advantages and drawbacks, and discuss more recent numerical methods that show promises for fast algorithms and accurate solutions. In the second part, we present and analyze a variety of applications and extensions involving viscoplastic flow simulations: yield slip at the wall, heat transfer, thixotropy, granular materials, and combining elasticity, with multiple phases and shallow flow approximations. We illustrate from a physical viewpoint how fascinating the corresponding rich phenomena pointed out by these simulations are.

[1]  R. J. Gordon,et al.  Anisotropic Fluid Theory: A Different Approach to the Dumbbell Theory of Dilute Polymer Solutions , 1972 .

[2]  P. P. Mosolov,et al.  On qualitative singularities of the flow of a viscoplastic medium in pipes , 1967 .

[3]  I. Frigaard,et al.  Yield stress effects on Rayleigh–Bénard convection , 2006, Journal of Fluid Mechanics.

[4]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[5]  I. Frigaard,et al.  Thermal plumes in viscoplastic fluids: flow onset and development , 2015, Journal of Fluid Mechanics.

[6]  N. Chakraborty,et al.  Aspect ratio effects in laminar natural convection of Bingham fluids in rectangular enclosures with , 2011 .

[7]  P. Saramito,et al.  A new $\theta $ -scheme algorithm and incompressible FEM for viscoelastic fluid flows , 1994 .

[8]  Enrique Domingo Fernández-Nieto,et al.  A Well-balanced Finite Volume-Augmented Lagrangian Method for an Integrated Herschel-Bulkley Model , 2012, J. Sci. Comput..

[9]  Jianying Zhang An augmented Lagrangian approach to Bingham fluid flows in a lid-driven square cavity with piecewise linear equal-order finite elements , 2010 .

[10]  Amy Q. Shen,et al.  Visco-plastic models of isothermal lava domes , 2000, Journal of Fluid Mechanics.

[11]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[12]  P. P. Mosolov,et al.  On stagnant flow regions of a viscous-plastic medium in pipes , 1966 .

[13]  O. Hassager,et al.  Displacement of one Newtonian fluid by another: Density effects in axial annular flow , 1997 .

[14]  B. Perthame,et al.  A new model of Saint Venant and Savage–Hutter type for gravity driven shallow water flows , 2003 .

[15]  Enrique D. Fernández-Nieto,et al.  Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches , 2009 .

[16]  Pierre-Yves Lagrée,et al.  The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology , 2011, Journal of Fluid Mechanics.

[17]  Sarah Hormozi,et al.  Two–dimensional viscoplastic dambreaks , 2016 .

[18]  Roland Glowinski,et al.  On the Numerical Simulation of Viscoplastic Fluid Flow , 2011 .

[19]  M. Olshanskii,et al.  Two finite-difference schemes for calculation of Bingham fluid flows in a cavity , 2008 .

[20]  E. C. Bingham Fluidity And Plasticity , 1922 .

[21]  I. Frigaard,et al.  Static wall layers in the displacement of two visco-plastic fluids in a plane channel , 2000, Journal of Fluid Mechanics.

[22]  J. Lions,et al.  Transfert de chaleur dans un fluide de Bingham dont la viscosité dépend de la température , 1972 .

[23]  P. Coussot,et al.  A theoretical framework for granular suspensions in a steady simple shear flow , 1999 .

[24]  J. Mewis,et al.  A structural kinetics model for thixotropy , 2006 .

[25]  Macro-size drop encapsulation , 2015, Journal of Fluid Mechanics.

[26]  I. Frigaard,et al.  The occurrence of fouling layers in the flow of a yield stress fluid along a wavy-walled channel , 2013 .

[27]  Cezar O.R. Negrão,et al.  A weakly compressible flow model for the restart of thixotropic drilling fluids , 2011 .

[28]  John Tsamopoulos,et al.  Creeping motion of a sphere through a Bingham plastic , 1985, Journal of Fluid Mechanics.

[29]  E. Fernández-Nieto,et al.  A multilayer shallow model for dry granular flows with the ${\it\mu}(I)$ -rheology: application to granular collapse on erodible beds , 2015, Journal of Fluid Mechanics.

[30]  Jean-Claude Latché,et al.  Analysis of the Brezzi-Pitkäranta Stabilized Galerkin Scheme for Creeping Flows of Bingham Fluids , 2004, SIAM J. Numer. Anal..

[31]  Michel Bercovier,et al.  A finite-element method for incompressible non-Newtonian flows , 1980 .

[32]  G. Georgiou,et al.  Cessation of viscoplastic Poiseuille flow with wall slip , 2014 .

[33]  Philippe Coussot,et al.  Efficient numerical computations of yield stress fluid flows using second-order cone programming , 2015 .

[34]  Ioan R. Ionescu,et al.  Modeling shallow avalanche onset over complex basal topography , 2016, Adv. Comput. Math..

[35]  Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general tridimensional topographies , 2014 .

[36]  Roger I. Tanner,et al.  Numerical analysis of three-dimensional Bingham plastic flow , 1992 .

[37]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[38]  P. Fullsack An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models , 1995 .

[39]  R. Poole,et al.  Laminar forced convection heat transfer from a heated square cylinder in a Bingham plastic fluid , 2013 .

[40]  John Tsamopoulos,et al.  Squeeze flow of Bingham plastics , 2001 .

[41]  Emmanuel Audusse,et al.  Finite-Volume Solvers for a Multilayer Saint-Venant System , 2007, Int. J. Appl. Math. Comput. Sci..

[42]  J. Oldroyd A rational formulation of the equations of plastic flow for a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[43]  D. Fraggedakis,et al.  Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids. , 2016, Soft matter.

[44]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[45]  G. Georgiou,et al.  Flow instabilities of Herschel–Bulkley fluids , 2003 .

[46]  Evan Mitsoulis,et al.  Creeping motion of a sphere in tubes filled with a Bingham plastic material , 1997 .

[47]  P. Saramito,et al.  Understanding and predicting viscous, elastic, plastic flows , 2011, The European physical journal. E, Soft matter.

[48]  J. Gray,et al.  A depth-averaged mu(I)-rheology for shallow granular free-surface flows , 2014 .

[49]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[50]  Three-dimensional jamming and flows of soft glassy materials. , 2009, Nature materials.

[51]  Michael Westdickenberg,et al.  Gravity driven shallow water models for arbitrary topography , 2004 .

[52]  H. Huppert The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface , 1982, Journal of Fluid Mechanics.

[53]  Enrique D. Fernández-Nieto,et al.  Shallow Water equations for Non-Newtonian fluids , 2010 .

[54]  J. Tsamopoulos,et al.  Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the Augmented Lagrangian Method with those via the Papanastasiou model , 2013 .

[55]  E. Mitsoulis,et al.  Flow simulation of herschel‐bulkley fluids through extrusion dies , 1993 .

[56]  J. Tsamopoulos,et al.  Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes , 2003 .

[57]  Philippe Coussot,et al.  Numerical modeling of mudflows , 1997 .

[58]  E. Mitsoulis,et al.  Numerical simulations of complex yield-stress fluid flows , 2017, Rheologica Acta.

[59]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[60]  Anthony Wachs,et al.  A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids , 2007 .

[61]  D. Laigle,et al.  Comparison of 2D debris-flow simulation models with field events , 2006 .

[62]  M. Olshanskii Analysis of semi-staggered finite-difference method with application to Bingham flows , 2009 .

[63]  Maxim A. Olshanskii,et al.  An Iterative Method for the Stokes-Type Problem with Variable Viscosity , 2009, SIAM J. Sci. Comput..

[64]  O. Hassager,et al.  Flow of viscoplastic fluids in eccentric annular geometries , 1992 .

[65]  Cessation of viscoplastic Poiseuille flow in a square duct with wall slip , 2016 .

[66]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[67]  P. Mendes Thixotropic elasto-viscoplastic model for structured fluids , 2011 .

[68]  R. Thompson,et al.  A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids , 2013, Rheologica Acta.

[69]  R. Chhabra,et al.  Forced Convection from a Heated Equilateral Triangular Cylinder in Bingham Plastic Fluids , 2014 .

[70]  On the stopping of thermal convection in viscoplastic liquid , 2011 .

[71]  P. Coussot,et al.  Rheophysics of pastes: a review of microscopic modelling approaches. , 2007, Soft matter.

[72]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[73]  Prashant,et al.  Simulations of complex flow of thixotropic liquids , 2009 .

[74]  R. Ewoldt,et al.  Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials , 2010 .

[75]  I. Frigaard,et al.  On the usage of viscosity regularisation methods for visco-plastic fluid flow computation , 2005 .

[76]  Prashant,et al.  Direct simulations of spherical particle motion in Bingham liquids , 2011, Comput. Chem. Eng..

[77]  J. Mewis,et al.  Thixotropy : Build-up and breakdown curves during flow , 2005 .

[78]  Evan Mitsoulis,et al.  Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids , 1997 .

[79]  E. C. Bingham An Investigation of the Laws of Plastic Flow , 2018 .

[80]  A. Vikhansky On the onset of natural convection of Bingham liquid in rectangular enclosures , 2010 .

[81]  I. Ionescu Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope , 2010 .

[82]  Florence Bertails-Descoubes,et al.  Nonsmooth simulation of dense granular flows with pressure-dependent yield stress , 2016 .

[83]  P. Saramito A damped Newton algorithm for computing viscoplastic fluid flows , 2016 .

[84]  Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers , 2009 .

[85]  Pierre Saramito,et al.  A new constitutive equation for elastoviscoplastic fluid flows , 2007 .

[86]  Gh.R. Kefayati,et al.  Natural convection problem in a Bingham fluid using the operator-splitting method , 2015 .

[87]  Numerical simulation of thermally convective viscoplastic fluids by semismooth second order type methods , 2013 .

[88]  R. Chhabra,et al.  Free convection from a heated circular cylinder in Bingham plastic fluids , 2014 .

[89]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[90]  C. Price,et al.  A trust-region SQP method for the numerical approximation of viscoplastic fluid flow , 2015, 1504.08057.

[91]  Christophe Ancey,et al.  Plasticity and geophysical flows: A review , 2007 .

[92]  A. Fortin,et al.  On the imposition of friction boundary conditions for the numerical simulation of Bingham fluid flows , 1991 .

[93]  P. Saramito,et al.  Modelling lava flow advance using a shallow-depth approximation for three-dimensional cooling of viscoplastic flows , 2016, Special Publications.

[94]  Georgios C. Georgiou,et al.  Numerical simulations of cessation flows of a Bingham plastic with the augmented Lagrangian method , 2010 .

[95]  D. G. Schaeffer,et al.  Well-posed and ill-posed behaviour of the ${\it\mu}(I)$ -rheology for granular flow , 2015, Journal of Fluid Mechanics.

[96]  Pierre Saramito,et al.  An adaptive finite element method for viscoplastic fluid flows in pipes , 2001 .

[97]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[98]  A. Davaille,et al.  Thermal instabilities in a yield stress fluid: Existence and morphology , 2013 .

[99]  Richard V. Craster,et al.  A consistent thin-layer theory for Bingham plastics , 1999 .

[100]  P. Liu,et al.  Oscillatory pipe flows of a yield-stress fluid , 2010, Journal of Fluid Mechanics.

[101]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[102]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[103]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[104]  Gregory Seregin,et al.  Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids , 2001 .

[105]  A. Putz,et al.  On the lubrication paradox and the use of regularisation methods for lubrication flows , 2009 .

[106]  S. G. Andrade,et al.  A combined BDF-semismooth Newton approach for time-dependent Bingham flow , 2012 .

[107]  M. Longair The Theoretical Framework , 1998 .

[108]  Ioan R. Ionescu,et al.  Augmented Lagrangian for shallow viscoplastic flow with topography , 2013, J. Comput. Phys..

[109]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[110]  R. Craster,et al.  Dynamics of cooling viscoplastic domes , 2004, Journal of Fluid Mechanics.

[111]  P. Saramito A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model , 2009 .

[112]  E. Fernández-Nieto,et al.  Shallow water equations for power law and Bingham fluids , 2012 .

[113]  J. Goddard Dissipative materials as models of thixotropy and plasticity , 1984 .

[114]  P. Saramito,et al.  Numerical modelling of foam Couette flows , 2008, The European physical journal. E, Soft matter.

[115]  O. Matar,et al.  Bubble rise dynamics in a viscoplastic material , 2015 .

[116]  Gareth H. McKinley,et al.  Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress) , 2013 .

[117]  Anthony Wachs,et al.  Numerical simulation of non-isothermal viscoplastic waxy crude oil flows , 2005 .

[118]  M. Hestenes Multiplier and gradient methods , 1969 .

[119]  I. Frigaard,et al.  Residual drilling mud during conditioning of uneven boreholes in primary cementing. Part 1: Rheology and geometry effects in non-inertial flows , 2015 .

[120]  Pierre Saramito,et al.  An adaptive finite element method for Bingham fluid flows around a cylinder , 2003 .

[121]  Thierry Dubois,et al.  A bi-projection method for Bingham type flows , 2016, Comput. Math. Appl..

[122]  I. Frigaard,et al.  Particle settling in yield stress fluids: Limiting time, distance and applications , 2016 .

[123]  H. Barnes Thixotropy—a review , 1997 .

[124]  A. B. Metzner,et al.  Transient phenomena in thixotropic systems , 2002 .

[125]  E. Haber,et al.  A mixed formulation of the Bingham fluid flow problem: Analysis and numerical solution , 2011 .

[126]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[127]  Y. Vassilevski,et al.  A NUMERICAL METHOD FOR THE SIMULATION OF FREE SURFACE FLOWS OF VISCOPLASTIC FLUID IN 3D , 2011 .

[128]  Pierre Saramito,et al.  A new operator splitting algorithm for elastoviscoplastic flow problems , 2013 .

[129]  F. Bouchut,et al.  Viscoplastic modeling of granular column collapse with pressure-dependent rheology , 2015 .

[130]  R. S. Schechter,et al.  HEAT TRANSFER TO BINGHAM PLASTICS IN LAMINAR FLOW THROUGH CIRCULAR TUBES WITH INTERNAL HEAT GENERATION , 1959 .

[131]  Sergio González Andrade,et al.  Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods , 2010, J. Comput. Appl. Math..

[132]  Jean-Claude Latché,et al.  On a numerical strategy to compute gravity currents of non-Newtonian fluids , 2004 .

[133]  Anthony Wachs,et al.  Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods , 2007 .

[134]  E. Gouillart,et al.  Rate of chaotic mixing in localized flows , 2016 .

[135]  D. Cheng Yield stress: A time-dependent property and how to measure it , 1986 .

[136]  Georgios C. Georgiou,et al.  Performance of the finite volume method in solving regularised Bingham flows: inertia effects in the lid-driven cavity flow , 2014, ArXiv.

[137]  P. Saramito,et al.  Steady Couette flows of elastoviscoplastic fluids are nonunique , 2012 .

[138]  Ian A. Frigaard,et al.  Numerical solution of duct flows of multiple visco-plastic fluids , 2004 .

[139]  T. Barker Well-posed continuum modelling of granular flows , 2017 .

[140]  D. Vola,et al.  Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results , 2003 .

[141]  M. Medale,et al.  A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow , 2010 .

[142]  R. Craster,et al.  Viscoplastic flow over an inclined surface , 2006 .

[143]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[144]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[145]  L. Muravleva Uzawa-like methods for numerical modeling of unsteady viscoplastic Bingham medium flows , 2015 .

[146]  I. A. Frigaard,et al.  A novel heat transfer switch using the yield stress , 2015, Journal of Fluid Mechanics.

[147]  S. Wilson,et al.  The channel entry problem for a yield stress fluid , 1996 .

[148]  Chiang C. Mei,et al.  Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid , 1990 .

[149]  J. Tsamopoulos,et al.  Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment , 2008, Journal of Fluid Mechanics.

[150]  Yongmin Zhang,et al.  Error estimates for the numerical approximation of time-dependent flow of Bingham fluid in cylindrical pipes by the regularization method , 2003, Numerische Mathematik.

[151]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[152]  Evan Mitsoulis,et al.  Viscoplastic flow around a cylinder kept between parallel plates , 2002 .

[153]  Robert J. Poole,et al.  Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls , 2010 .

[154]  Marc Medale,et al.  A three-dimensional numerical model for dense granular flows based on the µ(I) rheology , 2014, J. Comput. Phys..

[155]  H. R. Tamaddon-Jahromi,et al.  Computations with viscoplastic and viscoelastoplastic fluids , 2011 .

[156]  E. Mitsoulis,et al.  Entry flows of Bingham plastics in expansions , 2004 .

[157]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[158]  Chris J. Price,et al.  An accelerated dual proximal gradient method for applications in viscoplasticity , 2015, 1509.05084.

[159]  Multi-layer channel flows with yield stress fluids , 2011 .

[160]  José M. Gallardo,et al.  Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case , 2014, J. Comput. Phys..

[161]  Start-up flows of Dullaert–Mewis viscoplastic–thixoelastic fluids: A two-dimensional analysis , 2014 .

[162]  S. Savage,et al.  The Mechanics of Rapid Granular Flows , 1984 .

[163]  G. Midi,et al.  On dense granular flows , 2003, The European physical journal. E, Soft matter.

[164]  Anthony Wachs,et al.  A 1.5D numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines , 2009 .

[165]  Evan Mitsoulis,et al.  Entry and exit flows of Bingham fluids , 1992 .

[166]  Roger I. Tanner,et al.  Rheology : an historical perspective , 1998 .

[167]  G. Georgiou,et al.  Viscoplastic Poiseuille flow in a rectangular duct with wall slip , 2014 .

[168]  J. P. Singh,et al.  Interacting two-dimensional bubbles and droplets in a yield-stress fluid , 2008 .

[169]  An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall , 2008 .

[170]  J. Grotowski,et al.  On Variational Models for Quasi-static Bingham Fluids , 1996 .

[171]  M. Fuchs,et al.  Regularity results for the quasi–static Bingham variational inequality in dimensions two and three , 1998 .

[172]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[173]  Ian A. Frigaard,et al.  Creeping flow around particles in a Bingham fluid , 2010 .

[174]  Albert Magnin,et al.  Very slow flow of Bingham viscoplastic fluid around a circular cylinder , 2008 .