Some, though not all, previous studies have suggested that the inositol lipid which is hydrolysed during transmembrane signalling in response to receptor activation might be drawn from a metabolically discrete and relatively small hormone-sensitive lipid pool that turns over more rapidly than the bulk of membrane inositol lipid. In order to seek evidence for the existence of this putative hormone-sensitive lipid pool, we have double-labelled cells by growing them for 3 days in a medium containing [14C]inositol and then supplying them with [3H]inositol for the final 2 h before stimulation. We anticipated that stimulation of these doubly labelled cells might provoke the formation, from the postulated hormone-sensitive pool, of small quantities of relatively 3H-enriched inositol phosphates, and that these could be harvested from cells (provided that the cytosolic inositol monophosphatase and inositol 1,4-bisphosphate/inositol 1,3,4-trisphosphate 1-phosphatase activities are first inhibited by Li+). Experiments of this type, using both vasopressin-stimulated WRK1 rat mammary tumour cells and 3T3 mouse fibroblasts stimulated by prostaglandin F2 alpha, have largely failed to demonstrate the formation of relatively 3H-enriched inositol phosphates. There was a tendency for phosphatidyl-inositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate to have slightly higher 3H: 14C ratios than phosphatidylinositol, but the 3H: 14C ratios of the inositol phosphates formed in stimulated cells were not substantially greater than the 3H: 14C ratios of the inositol lipids. We therefore conclude, at least for the two cell lines that we studied, that hormone-stimulated inositol lipid hydrolysis can call, either directly or indirectly, upon the majority of the inositol lipid complement of the stimulated cell.