Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing

Metric tensors play a key role to control the generation of unstructured anisotropic meshes. In practice, the most well established error analysis enables to calculate a metric tensor on an element basis. In this paper, we propose to build a metric field directly at the nodes of the mesh for a direct use in the meshing tools. First, the unit mesh metric is defined and well justified on a node basis, by using the statistical concept of length distribution tensors. Then, the interpolation error analysis is performed on the projected approximate scalar field along the edges. The error estimate is established on each edge whatever the dimension is. It enables to calculate a stretching factor providing a new edge length distribution, its associated tensor and the corresponding metric. The optimal stretching factor field is obtained by solving an optimization problem under the constraint of a fixed number of edges in the mesh. Several examples of interpolation error are proposed as well as preliminary results of anisotropic adaptation for interface and free surface problem using a level set method.

[1]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[2]  Suresh G. Advani,et al.  Closure approximations for three‐dimensional structure tensors , 1990 .

[3]  Thierry Coupez,et al.  Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method , 2012 .

[4]  Thierry Coupez,et al.  Stabilized finite element method for incompressible flows with high Reynolds number , 2010, J. Comput. Phys..

[5]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[6]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[7]  Thierry Coupez,et al.  Dynamic Parallel Adaption for Three Dimensional Unstructured Meshes: Application to Interface Tracking , 2008, IMR.

[8]  Suresh G. Advani,et al.  The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites , 1987 .

[9]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[10]  Thierry Coupez,et al.  Advanced parallel computing in material forming with CIMLib , 2009 .

[11]  Elie Hachem,et al.  Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces , 2009 .

[12]  Frédéric Alauzet,et al.  Adaptation de maillage anisotrope en trois dimensions : applications aux simulations instationnaires en mécanique des fluides , 2003 .

[13]  Thierry Coupez,et al.  Génération de maillage et adaptation de maillage par optimisation locale , 2000 .

[14]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[15]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[16]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[17]  T. Coupez,et al.  Convected level set method for the numerical simulation of fluid buckling , 2011 .

[18]  Adrien Loseille,et al.  Adaptation de maillage anisotrope 3D multi-échelles et ciblée à une fonctionnelle pour la mécanique des fluides : Application à la prédiction haute-fidélité du bang sonique , 2008 .

[19]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .