Network Data

Many economic activities are embedded in networks: sets of agents and the (often) rivalrous relationships connecting them to one another. Input sourcing by firms, interbank lending, scientific research, and job search are four examples, among many, of networked economic activities. Motivated by the premise that networks' structures are consequential, this chapter describes econometric methods for analyzing them. I emphasize (i) dyadic regression analysis incorporating unobserved agent-specific heterogeneity and supporting causal inference, (ii) techniques for estimating, and conducting inference on, summary network parameters (e.g., the degree distribution or transitivity index); and (iii) empirical models of strategic network formation admitting interdependencies in preferences. Current research challenges and open questions are also discussed.

[1]  B. Russett,et al.  Triangulating Peace: Democracy, Interdependence, and International Organizations , 2000 .

[2]  Matias D. Cattaneo,et al.  FEDERAL RESERVE BANK OF NEW YORK , 2010 .

[3]  Han Hong,et al.  Estimating Static Models of Strategic Interactions , 2010 .

[4]  Angelo Mele,et al.  A Structural Model of Dense Network Formation , 2017 .

[5]  E. Helpman,et al.  ESTIMATING TRADE FLOWS : TRADING PARTNERS AND TRADING VOLUMES Elhanan Helpman , 2007 .

[6]  Xi Qu,et al.  Estimating a spatial autoregressive model with an endogenous spatial weight matrix , 2015 .

[7]  Konrad Menzel,et al.  Bootstrap with Clustering in Two or More Dimensions , 2017, 1703.03043.

[8]  A. Raftery,et al.  Ice Floe Identification in Satellite Images Using Mathematical Morphology and Clustering about Principal Curves , 1992 .

[9]  N. Christakis,et al.  Social network targeting to maximise population behaviour change: a cluster randomised controlled trial , 2015, The Lancet.

[10]  Christian Hennig,et al.  Methods for merging Gaussian mixture components , 2010, Adv. Data Anal. Classif..

[11]  S. Roberts Novelty detection using extreme value statistics , 1999 .

[12]  Allou Samé,et al.  Model-based clustering and segmentation of time series with changes in regime , 2011, Adv. Data Anal. Classif..

[13]  Yannis M. Ioannides,et al.  Job Information Networks, Neighborhood Effects, and Inequality , 2004 .

[14]  C. Hennig Breakdown points for maximum likelihood estimators of location–scale mixtures , 2004, math/0410073.

[15]  Thomas Brendan Murphy,et al.  Exponential family mixed membership models for soft clustering of multivariate data , 2016, Advances in Data Analysis and Classification.

[16]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[17]  Konrad Menzel,et al.  STRATEGIC NETWORK FORMATION WITH MANY AGENTS , 2016 .

[18]  D. Binder Bayesian cluster analysis , 1978 .

[19]  M. Gallegos,et al.  Trimming algorithms for clustering contaminated grouped data and their robustness , 2009, Adv. Data Anal. Classif..

[20]  A. Moore,et al.  Dynamic social network analysis using latent space models , 2005, SKDD.

[21]  Anil K. Jain,et al.  Simultaneous feature selection and clustering using mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Surajit Ray,et al.  The topography of multivariate normal mixtures , 2005 .

[23]  Sanjeev Goyal,et al.  Social Networks and Research Output , 2014, Review of Economics and Statistics.

[24]  Mark A. Schankerman,et al.  Identifying Technology Spillovers and Product Market Rivalry , 2005 .

[25]  P. Pattison,et al.  New Specifications for Exponential Random Graph Models , 2006 .

[26]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[27]  Adrian E. Raftery,et al.  Normal uniform mixture differential gene expression detection for cDNA microarrays , 2005, BMC Bioinformatics.

[28]  St'ephane Robin,et al.  Uncovering latent structure in valued graphs: A variational approach , 2010, 1011.1813.

[29]  P. Diaconis Finite forms of de Finetti's theorem on exchangeability , 1977, Synthese.

[30]  Paul D. McNicholas,et al.  Capturing patterns via parsimonious t mixture models , 2013, 1303.2316.

[31]  Ryan P. Browne,et al.  Mixtures of Shifted AsymmetricLaplace Distributions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[33]  S. Ghigo,et al.  Analysis of air quality monitoring networks by functional clustering , 2008 .

[34]  K. Jöreskog Structural analysis of covariance and correlation matrices , 1978 .

[35]  G. Imbens,et al.  Exact p-Values for Network Interference , 2015, 1506.02084.

[36]  Lecture 1: Conditionally-Independent Dyad Models , 2016 .

[37]  Geoffrey J. McLachlan,et al.  On mixtures of skew normal and skew $$t$$-distributions , 2012, Adv. Data Anal. Classif..

[38]  J. Wolfe PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS. , 1970, Multivariate behavioral research.

[39]  J. Daudin,et al.  Classification and estimation in the Stochastic Block Model based on the empirical degrees , 2011, 1110.6517.

[40]  Julien Jacques,et al.  Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..

[41]  Aureo de Paula,et al.  Econometric Analysis of Games with Multiple Equilibria , 2012 .

[42]  James J. Heckman,et al.  Handbook of Econometrics , 1985 .

[43]  W. Howells,et al.  Howells' craniometric data on the Internet. , 1996, American journal of physical anthropology.

[44]  Arun G. Chandrasekhar,et al.  The Diffusion of Microfinance , 2012, Science.

[45]  Shuyang Sheng,et al.  A Structural Econometric Analysis of Network Formation Games Through Subnetworks , 2020 .

[46]  Ufuk Akcigit,et al.  Networks and the Macroeconomy: An Empirical Exploration , 2015, NBER Macroeconomics Annual.

[47]  Paul D. McNicholas,et al.  Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions , 2011, Statistics and Computing.

[48]  C. Matr'an,et al.  A general trimming approach to robust Cluster Analysis , 2008, 0806.2976.

[49]  R. V. Mises,et al.  On the Classification of Observation Data into Distinct Groups , 1945 .

[50]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[51]  Guido Sanguinetti,et al.  Dimensionality Reduction of Clustered Data Sets , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Edoardo M. Airoldi,et al.  The Structure of Negative Social Ties in Rural Village Networks , 2019, Sociological science.

[53]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[54]  Matthew E. Brashears,et al.  Social Isolation in America: Changes in Core Discussion Networks over Two Decades , 2006 .

[55]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[56]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[57]  R. Hathaway A constrained EM algorithm for univariate normal mixtures , 1986 .

[58]  Attila Ambrus,et al.  Consumption Risk-Sharing in Social Networks , 2010 .

[59]  Xiaotong Shen,et al.  Penalized model-based clustering with unconstrained covariance matrices. , 2009, Electronic journal of statistics.

[60]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[61]  Volodymyr Melnykov,et al.  An effective strategy for initializing the EM algorithm in finite mixture models , 2016, Advances in Data Analysis and Classification.

[62]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[63]  D. Haughton On the Choice of a Model to Fit Data from an Exponential Family , 1988 .

[64]  Tao Chen,et al.  Model-based multidimensional clustering of categorical data , 2012, Artif. Intell..

[65]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[66]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[67]  B. Leroux Consistent estimation of a mixing distribution , 1992 .

[68]  Sourav Chatterjee Large Deviations for Random Graphs , 2017 .

[69]  Yingjie Xia,et al.  Scalable Constrained Spectral Clustering , 2015, IEEE Transactions on Knowledge and Data Engineering.

[70]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[71]  Belur V. Dasarathy,et al.  Nosing Around the Neighborhood: A New System Structure and Classification Rule for Recognition in Partially Exposed Environments , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  K. Jon Ranson,et al.  The Boreal Ecosystem-Atmosphere Study (BOREAS) : an overview and early results from the 1994 field year , 1995 .

[73]  Robert M. Townsend,et al.  Risk and Insurance in Village India , 1994 .

[74]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[75]  Silvana Tenreyro,et al.  Currency Unions in Prospect and Retrospect , 2010 .

[76]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[77]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[78]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[79]  Matthew O. Jackson,et al.  The Formation of Networks with Transfers Among Players , 2004, J. Econ. Theory.

[80]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[81]  Cordelia Schmid,et al.  High-dimensional data clustering , 2006, Comput. Stat. Data Anal..

[82]  G. Govaert,et al.  Clustering for binary data and mixture models—choice of the model , 1997 .

[83]  L. Duponchel,et al.  Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation , 2009 .

[84]  A. Raftery,et al.  Bayesian Multidimensional Scaling and Choice of Dimension , 2001 .

[85]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[86]  G. Celeux,et al.  Exact and Monte Carlo calculations of integrated likelihoods for the latent class model , 2010 .

[87]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[88]  D. Rubin Estimation in Parallel Randomized Experiments , 1981 .

[89]  Wayne S. DeSarbo,et al.  Model-Based Segmentation Featuring Simultaneous Segment-Level Variable Selection , 2012 .

[90]  Geert Ridder,et al.  Measuring the Effects of Segregation in the Presence of Social Spillovers: A Nonparametric Approach , 2010 .

[91]  P. V. Marsden,et al.  Core Discussion Networks of Americans , 1987 .

[92]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[93]  Gérard Govaert,et al.  Estimation and selection for the latent block model on categorical data , 2015, Stat. Comput..

[94]  John C. Wierman,et al.  Subgraph counts in random graphs using incomplete u-statistics methods , 1988, Discret. Math..

[95]  Charles Bouveyron,et al.  The dynamic random subgraph model for the clustering of evolving networks , 2016, Computational Statistics.

[96]  Neil Gershenfeld,et al.  Nonlinear Inference and Cluster‐Weighted Modeling , 1997 .

[97]  Nicola Torelli,et al.  Advances in theoretical and applied statistics , 2013 .

[98]  Guido M. Kuersteiner,et al.  Limit Theorems for Data with Network Structure , 2019, 1908.02375.

[99]  P. Bickel,et al.  An Analysis of Transformations Revisited , 1981 .

[100]  Hui Zou,et al.  Regularized Parameter Estimation in High-Dimensional Gaussian Mixture Models , 2011, Neural Computation.

[101]  Nicoleta Serban,et al.  Clustering Random Curves Under Spatial Interdependence With Application to Service Accessibility , 2012, Technometrics.

[102]  Kaivan Munshi Networks in the Modern Economy: Mexican Migrants in the U. S. Labor Market , 2003 .

[103]  D. Karlis An EM algorithm for multivariate Poisson distribution and related models , 2003 .

[104]  Marcel J. T. Reinders,et al.  Classification in the presence of class noise using a probabilistic Kernel Fisher method , 2007, Pattern Recognit..

[105]  Harrison H. Zhou,et al.  Rate-optimal graphon estimation , 2014, 1410.5837.

[106]  A. Raftery,et al.  Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes , 1998 .

[107]  Drew A. Linzer,et al.  poLCA: An R Package for Polytomous Variable Latent Class Analysis , 2011 .

[108]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[110]  Thomas Brendan Murphy,et al.  Review of statistical network analysis: models, algorithms, and software , 2012, Stat. Anal. Data Min..

[111]  P. Diaconis,et al.  Estimating and understanding exponential random graph models , 2011, 1102.2650.

[112]  Paul D. McNicholas,et al.  Parsimonious Gaussian mixture models , 2008, Stat. Comput..

[113]  M. West,et al.  A Bayesian method for classification and discrimination , 1992 .

[114]  Thomas Brendan Murphy,et al.  Model-based clustering with sparse covariance matrices , 2017, Statistics and Computing.

[115]  Zhihua Zhang,et al.  Learning a multivariate Gaussian mixture model with the reversible jump MCMC algorithm , 2004, Stat. Comput..

[116]  Donald W. K. Andrews,et al.  Identification and Inference for Econometric Models , 2005 .

[117]  David M. Blei,et al.  Hierarchical relational models for document networks , 2009, 0909.4331.

[118]  E. Xing,et al.  Discrete Temporal Models of Social Networks , 2006, SNA@ICML.

[119]  Martin Weidner,et al.  Individual and time effects in nonlinear panel models with large N , T , 2013, 1311.7065.

[120]  Christian Hennig,et al.  A simulation study to compare robust clustering methods based on mixtures , 2010, Adv. Data Anal. Classif..

[121]  B. De Finetti,et al.  Funzione caratteristica di un fenomeno aleatorio , 1929 .

[122]  Bryan S. Graham,et al.  Testing for externalities in network formation using simulation , 2019, The Econometric Analysis of Network Data.

[123]  Frank Schweitzer,et al.  The Rise and Fall of R&D Networks , 2013, ArXiv.

[124]  Christophe Ambroise,et al.  Clustering based on random graph model embedding vertex features , 2009, Pattern Recognit. Lett..

[125]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[126]  A. Wald Contributions to the Theory of Statistical Estimation and Testing Hypotheses , 1939 .

[127]  Symeon Papavassiliou,et al.  Network intrusion and fault detection: a statistical anomaly approach , 2002, IEEE Commun. Mag..

[128]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[129]  Charles Bouveyron,et al.  Robust supervised classification with mixture models: Learning from data with uncertain labels , 2009, Pattern Recognit..

[130]  G. McLachlan,et al.  Updating a discriminant function in basis of unclassified data , 1982 .

[131]  Martin E. Hellman,et al.  The Nearest Neighbor Classification Rule with a Reject Option , 1970, IEEE Trans. Syst. Sci. Cybern..

[132]  C. Schmid,et al.  High-Dimensional Discriminant Analysis , 2005 .

[133]  Satish Iyengar,et al.  Variable Selection for Skewed Model-Based Clustering: Application to the Identification of Novel Sleep Phenotypes , 2018, Journal of the American Statistical Association.

[134]  I. C. Gormley,et al.  A mixture of experts latent position cluster model for social network data , 2010 .

[135]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[136]  G. Gates,et al.  The reduced nearest neighbor rule (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[137]  Richard Blundell,et al.  Endogeneity in Nonparametric and Semiparametric Regression Models , 2022 .

[138]  Agostino Nobile,et al.  Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..

[139]  M. Voltz,et al.  Geostatistical Interpolation of Curves: A Case Study in Soil Science , 1993 .

[140]  P. Rosenbaum Interference Between Units in Randomized Experiments , 2007 .

[141]  W. Stephenson,et al.  Introduction to inverted factor analysis, with some applications to studies in orexis. , 1936 .

[142]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[143]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[144]  Morten L. Bech,et al.  The Topology of the Federal Funds Market , 2008, SSRN Electronic Journal.

[145]  Raphael Gottardo,et al.  Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution , 2010, Statistics and Computing.

[146]  C. S. Wallace,et al.  Estimation and Inference by Compact Coding , 1987 .

[147]  Michèle A. Weynandt,et al.  Coworkers, Networks, and Job Search Outcomes , 2014 .

[148]  Alexander Volfovsky,et al.  2 A ug 2 01 4 CHARACTERIZATION OF FINITE GROUP INVARIANT DISTRIBUTIONS , 2014 .

[149]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[150]  T. B. Murphy,et al.  Variable selection methods for model-based clustering , 2017, 1707.00306.

[151]  Kosuke Uetake,et al.  Estimating Supermodular Games Using Rationalizable Strategies , 2013 .

[152]  Jerry A. Hausman,et al.  Panel Data and Unobservable Individual Effects , 1981 .

[153]  Elisabeth Gassiat,et al.  Variable selection in model-based clustering using multilocus genotype data , 2009, Adv. Data Anal. Classif..

[154]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[155]  F. Marriott 389: Separating Mixtures of Normal Distributions , 1975 .

[156]  Marcel Fafchamps,et al.  The formation of risk sharing networks , 2007 .

[157]  Guillaume Bouchard,et al.  Selection of generative models in classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  Tsung I. Lin,et al.  Maximum likelihood estimation for multivariate skew normal mixture models , 2009, J. Multivar. Anal..

[159]  V. H. Lachos,et al.  mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions , 2013 .

[160]  P. Bearman,et al.  Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks1 , 2004, American Journal of Sociology.

[161]  Tsung I. Lin,et al.  Robust mixture modeling using multivariate skew t distributions , 2010, Stat. Comput..

[162]  Kate Ho Insurer-Provider Networks in the Medical Care Market , 2005, The American economic review.

[163]  C. Matias,et al.  Identifiability of parameters in latent structure models with many observed variables , 2008, 0809.5032.

[164]  Paul D. McNicholas,et al.  Model-based classification via mixtures of multivariate t-distributions , 2011, Comput. Stat. Data Anal..

[165]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[166]  Sylvia Frühwirth-Schnatter,et al.  Panel data analysis: a survey on model-based clustering of time series , 2011, Adv. Data Anal. Classif..

[167]  Radu Horaud,et al.  Rigid and Articulated Point Registration with Expectation Conditional Maximization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[168]  Adrian E. Raftery,et al.  Model-Based Clustering for Image Segmentation and Large Datasets via Sampling , 2004, J. Classif..

[169]  Geoffrey J. McLachlan,et al.  Modelling high-dimensional data by mixtures of factor analyzers , 2003, Comput. Stat. Data Anal..

[170]  C. Bouveyron,et al.  The discriminative functional mixture model for a comparative analysis of bike sharing systems , 2016, 1601.07999.

[171]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .

[172]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[173]  Harish Krishnan,et al.  The Impact of Supply Chains on Firm-Level Productivity , 2017, Manag. Sci..

[174]  Geert Ridder,et al.  Estimation of Large Network Formation Games , 2020 .

[175]  Peter D. Hoff,et al.  Fast Inference for the Latent Space Network Model Using a Case-Control Approximate Likelihood , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[176]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[177]  Edoardo M. Airoldi,et al.  Statistical Network Analysis: Models, Issues, and New Directions - ICML 2006 Workshop on Statistical Network Analysis, Pittsburgh, PA, USA, June 29, 2006, Revised Selected Papers , 2007, SNA@ICML.

[178]  Wei Pan,et al.  Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables. , 2008, Electronic journal of statistics.

[179]  Adrian E. Raftery,et al.  Improved initialisation of model-based clustering using Gaussian hierarchical partitions , 2015, Adv. Data Anal. Classif..

[180]  T. Pavlenko On feature selection, curse-of-dimensionality and error probability in discriminant analysis , 2003 .

[181]  Paul D. McNicholas,et al.  Model-based clustering of microarray expression data via latent Gaussian mixture models , 2010, Bioinform..

[182]  Ove Frank,et al.  Transitivity in stochastic graphs and digraphs , 1980 .

[183]  Brian W. Rogers,et al.  The Economic Consequences of Social Network Structure , 2015 .

[184]  Alessandra Menafoglio,et al.  A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space , 2013 .

[185]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[186]  Yuhei Miyauchi Structural Estimation of Pairwise Stable Networks with Nonnegative Externality , 2016 .

[187]  G. Celeux,et al.  Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments , 2005 .

[188]  Adrian E. Raftery,et al.  Donuts, scratches and blanks: robust model-based segmentation of microarray images , 2005, Bioinform..

[189]  Bryan S. Graham,et al.  Homophily and Transitivity in Dynamic Network Formation , 2016 .

[190]  Jing-Yu Yang,et al.  A theorem on the uncorrelated optimal discriminant vectors , 2001, Pattern Recognit..

[191]  Nial Friel,et al.  Inferring structure in bipartite networks using the latent blockmodel and exact ICL , 2014, Network Science.

[192]  Chad Syverson,et al.  Vertical Integration and Input Flows , 2014 .

[193]  R. A. Boyles On the Convergence of the EM Algorithm , 1983 .

[194]  R. Hathaway Another interpretation of the EM algorithm for mixture distributions , 1986 .

[195]  James J. Heckman,et al.  Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation , 2007 .

[196]  P. Pattison,et al.  Cumulated social roles: The duality of persons and their algebras☆ , 1986 .

[197]  Daeyoung Kim,et al.  Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers , 2014, J. Multivar. Anal..

[198]  Luis Angel García-Escudero,et al.  Avoiding spurious local maximizers in mixture modeling , 2014, Statistics and Computing.

[199]  Elie Tamer,et al.  Identifying preferences in networks with bounded degree , 2016 .

[200]  Wan-Lun Wang,et al.  An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers , 2012, Computational Statistics.

[201]  D. M. Topkis Supermodularity and Complementarity , 1998 .

[202]  Vincent Miele,et al.  Statistical clustering of temporal networks through a dynamic stochastic block model , 2015, 1506.07464.

[203]  Rodney X. Sturdivant,et al.  Applied Logistic Regression: Hosmer/Applied Logistic Regression , 2005 .

[204]  T. B. Murphy,et al.  Joint Modelling of Multiple Network Views , 2013, 1301.3759.

[205]  Elena Manresa,et al.  Grouped Patterns of Heterogeneity in Panel Data , 2015 .

[206]  T. Snijders,et al.  p2: a random effects model with covariates for directed graphs , 2004 .

[207]  Ida Johnsson,et al.  Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach , 2017, Review of Economics and Statistics.

[208]  Christian Hennig Discussion of “Model-based clustering with non-normal mixture distributions” by S. X. Lee and G. J. McLachlan , 2013, Stat. Methods Appl..

[209]  H. White,et al.  “Structural Equivalence of Individuals in Social Networks” , 2022, The SAGE Encyclopedia of Research Design.

[210]  Adrian E Raftery,et al.  Interlocking directorates in Irish companies using a latent space model for bipartite networks , 2016, Proceedings of the National Academy of Sciences.

[211]  Wei Liu,et al.  An Efficient Semi-Supervised Clustering Algorithm with Sequential Constraints , 2015, KDD.

[212]  Mark S. Granovetter Economic Action and Social Structure: The Problem of Embeddedness , 1985, American Journal of Sociology.

[213]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[214]  C. Fee,et al.  Sources of Gains in Horizontal Mergers: Evidence from Customer, Supplier, and Rival Firms , 2003 .

[215]  D. Rubin,et al.  Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction , 2016 .

[216]  M. Verleysen,et al.  Classification in the Presence of Label Noise: A Survey , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[217]  B. Sommers,et al.  Moving for medicaid? Recent eligibility expansions did not induce migration from other states. , 2014, Health affairs.

[218]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[219]  R. Hathaway A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions , 1985 .

[220]  Rosanna Verde,et al.  Clustering Spatio-Functional Data: A Model Based Approach , 2010 .

[221]  A. Siow,et al.  Who Marries Whom and Why , 2006, Journal of Political Economy.

[222]  P. Holland,et al.  A Method for Detecting Structure in Sociometric Data , 1970, American Journal of Sociology.

[223]  Erin E. Peterson,et al.  A Moving Average Approach for Spatial Statistical Models of Stream Networks , 2010 .

[224]  David L. Dowe,et al.  Foreword re C. S. Wallace , 2008, Comput. J..

[225]  Chuanhai Liu ML Estimation of the MultivariatetDistribution and the EM Algorithm , 1997 .

[226]  Julien Jacques,et al.  Model-based co-clustering for ordinal data , 2017, Comput. Stat. Data Anal..

[227]  R. Cattell A note on correlation clusters and cluster search methods , 1944 .

[228]  Yuguo Chen,et al.  Latent Space Models for Dynamic Networks , 2015, 2005.08808.

[229]  E. M. Carter,et al.  High breakdown mixture discriminant analysis , 2005 .

[230]  M. Genton,et al.  On fundamental skew distributions , 2005 .

[231]  Calyampudi R. Rao A General Theory of Discrimination When the Information About Alternative Population Distributions is Based on Samples , 1954 .

[232]  Béla Bollobás,et al.  Random Graphs , 1985 .

[233]  Fionn Murtagh,et al.  Handbook of Cluster Analysis , 2015 .

[234]  Ove Frank,et al.  MOMENT PROPERTIES OF SUBGRAPH COUNTS IN STOCHASTIC GRAPHS , 1979 .

[235]  Michael Gofman,et al.  Efficiency and Stability of a Financial Architecture with Too-Interconnected-to-Fail Institutions , 2016 .

[236]  Adrian E. Raftery,et al.  MCLUST: Software for Model-Based Cluster Analysis , 1999 .

[237]  Sylvia Kaufmann,et al.  Model-Based Clustering of Multiple Time Series , 2004 .

[238]  Timothy G. Conley,et al.  Learning About a New Technology: Pineapple in Ghana , 2010 .

[239]  MCMC estimation for the p(2) network regression model with crossed random effects. , 2009, The British journal of mathematical and statistical psychology.

[240]  X ZhengAlice,et al.  A Survey of Statistical Network Models , 2010 .

[241]  Luis Angel García-Escudero,et al.  A review of robust clustering methods , 2010, Adv. Data Anal. Classif..

[242]  Silvana Tenreyro,et al.  The Log of Gravity , 2004 .

[243]  Thomas Y. Choi,et al.  TRIADS IN SUPPLY NETWORKS: THEORIZING BUYER–SUPPLIER–SUPPLIER RELATIONSHIPS , 2009 .

[244]  Carla E. Brodley,et al.  Identifying Mislabeled Training Data , 1999, J. Artif. Intell. Res..

[245]  T. Thompson,et al.  Finite mixture models with concomitant information: assessing diagnostic criteria for diabetes , 2002 .

[246]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[247]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[248]  R. Tibshirani,et al.  On the “degrees of freedom” of the lasso , 2007, 0712.0881.

[249]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[250]  Bryan S. Graham,et al.  Efficiency Bounds for Missing Data Models with Semiparametric Restrictions , 2008 .

[251]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[252]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[253]  Maria Bortman,et al.  Regularized Mixture Density Estimation With an Analytical Setting of Shrinkage Intensities , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[254]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[255]  Christopher Udry,et al.  Risk and Insurance in a Rural Credit Market: An Empirical Investigation in Northern Nigeria , 1994 .

[256]  Stephen E. Fienberg,et al.  An Exponential Family of Probability Distributions for Directed Graphs: Comment , 1981 .

[257]  Nial Friel,et al.  Block clustering with collapsed latent block models , 2010, Statistics and Computing.

[258]  Paul D. McNicholas,et al.  Clustering with the multivariate normal inverse Gaussian distribution , 2016, Comput. Stat. Data Anal..

[259]  J. C. Brown,et al.  The Anatomy of Racial Inequality , 2003 .

[260]  Matthew O. Jackson,et al.  Relating Network Structure to Diffusion Properties through Stochastic Dominance , 2007 .

[261]  M. Jackson,et al.  Social Capital and Social Quilts: Network Patterns of Favor Exchange , 2011 .

[262]  B. Graham Methods of Identification in Social Networks , 2014 .

[263]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[264]  Giovanni Peri,et al.  The Effect of Income and Immigration Policies on International Migration , 2012 .

[265]  Martin Weidner,et al.  Individual and Time Effects in Nonlinear Panel Data Models with Large N, T , 2011 .

[266]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[267]  Reza Ebrahimpour,et al.  Mixture of experts: a literature survey , 2014, Artificial Intelligence Review.

[268]  Luca Scrucca,et al.  Dimension reduction for model-based clustering , 2015, Stat. Comput..

[269]  Christophe Biernacki,et al.  Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..

[270]  G. Celeux,et al.  Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition , 1996 .

[271]  A. Rinaldo,et al.  CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS. , 2011, Annals of statistics.

[272]  Adrian E. Raftery,et al.  Linear flaw detection in woven textiles using model-based clustering , 1997, Pattern Recognit. Lett..

[273]  Adrian O'Hagan,et al.  Model-Based and Nonparametric Approaches to Clustering for Data Compression in Actuarial Applications , 2017 .

[274]  Peng Wang,et al.  Recent developments in exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[275]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.

[276]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[277]  Luis Angel García-Escudero,et al.  Exploring the number of groups in robust model-based clustering , 2011, Stat. Comput..

[278]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[279]  Douglas L. Miller,et al.  Robust Inference for Dyadic Data , 2015 .

[280]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[281]  Daeyoung Kim,et al.  Root selection in normal mixture models , 2012, Comput. Stat. Data Anal..

[282]  David R. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[283]  J. Mesirov,et al.  Automated high-dimensional flow cytometric data analysis , 2009, Proceedings of the National Academy of Sciences.

[284]  Ruggero Bellio,et al.  A pairwise likelihood approach to generalized linear models with crossed random effects , 2005 .

[285]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[286]  Tsung-I Lin,et al.  Supervised learning of multivariate skew normal mixture models with missing information , 2010, Comput. Stat..

[287]  Amrita Nain,et al.  Horizontal acquisitions and buying power: A product market analysis , 2011 .

[288]  Gérard Govaert,et al.  Block clustering with Bernoulli mixture models: Comparison of different approaches , 2008, Comput. Stat. Data Anal..

[289]  Alfred O. Hero,et al.  Dynamic Stochastic Blockmodels for Time-Evolving Social Networks , 2014, IEEE Journal of Selected Topics in Signal Processing.

[290]  Gérard Govaert,et al.  An improvement of the NEC criterion for assessing the number of clusters in a mixture model , 1999, Pattern Recognit. Lett..

[291]  Adrian E. Raftery,et al.  Finding Curvilinear Features in Spatial Point Patterns: Principal Curve Clustering with Noise , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[292]  Damien McParland,et al.  Model based clustering for mixed data: clustMD , 2015, Advances in Data Analysis and Classification.

[293]  Geoffrey J. McLachlan,et al.  EMMIXcskew: an R Package for the Fitting of a Mixture of Canonical Fundamental Skew t-Distributions , 2015, 1509.02069.

[294]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[295]  Miguel Á. Carreira-Perpiñán,et al.  Practical Identifiability of Finite Mixtures of Multivariate Bernoulli Distributions , 2000, Neural Computation.

[296]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[297]  Paul D. McNicholas,et al.  Parsimonious skew mixture models for model-based clustering and classification , 2013, Comput. Stat. Data Anal..

[298]  Julien Sauvagnat,et al.  Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks , 2015 .

[299]  Cristina Gualdani,et al.  An Econometric Model of Network Formation with an Application to Board Interlocks between Firms , 2020 .

[300]  A. Scott,et al.  Clustering methods based on likelihood ratio criteria. , 1971 .

[301]  S. Fienberg,et al.  DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. , 2007, The annals of applied statistics.

[302]  G. Imbens,et al.  Social Networks and the Identification of Peer Effects , 2013 .

[303]  P. Holland,et al.  An Exponential Family of Probability Distributions for Directed Graphs , 1981 .

[304]  Jinyong Hahn,et al.  JACKKNIFE AND ANALYTICAL BIAS REDUCTION FOR NONLINEAR PANEL MODELS , 2003 .

[305]  Yuhei Miyauchi,et al.  Structural Estimation of Pairwise Stable Networks with Nonnegative Externality , 2014 .

[306]  Thomas Brendan Murphy,et al.  Computational aspects of fitting mixture models via the expectation-maximization algorithm , 2012, Comput. Stat. Data Anal..

[307]  Bertrand Michel,et al.  Slope heuristics: overview and implementation , 2011, Statistics and Computing.

[308]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[309]  J. Mateu,et al.  Ordinary kriging for function-valued spatial data , 2011, Environmental and Ecological Statistics.

[310]  Halima Bensmail,et al.  A novel approach for clustering proteomics data using Bayesian fast Fourier transform , 2005, Bioinform..

[311]  Tian Zheng,et al.  Estimation of exponential random graph models for large social networks via graph limits , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[312]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[313]  G. Davis Agents without Principles? The Spread of the Poison Pill through the Intercorporate Network , 1991 .

[314]  Charles Bouveyron,et al.  The stochastic topic block model for the clustering of vertices in networks with textual edges , 2016, Statistics and Computing.

[315]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[316]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[317]  Patrick J. Wolfe,et al.  Network histograms and universality of blockmodel approximation , 2013, Proceedings of the National Academy of Sciences.

[318]  N. Cressie,et al.  Spatial prediction on a river network , 2006 .

[319]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[320]  David Peel,et al.  The EMMIX Algorithm for the Fitting of Normal and t-Components , 1999 .

[321]  C. Manski Identification of Endogenous Social Effects: The Reflection Problem , 1993 .

[322]  A. M. Aguilera,et al.  Modeling environmental data by functional principal component logistic regression , 2005 .

[323]  E. Tamer Incomplete Simultaneous Discrete Response Model with Multiple Equilibria , 2003 .

[324]  Nema Dean,et al.  Latent class analysis variable selection , 2010, Annals of the Institute of Statistical Mathematics.

[325]  Adrian E. Raftery,et al.  Model-based Methods of Classification: Using the mclust Software in Chemometrics , 2007 .

[326]  Thomas Brendan Murphy,et al.  Variable Selection and Updating In Model-Based Discriminant Analysis for High Dimensional Data with Food Authenticity Applications. , 2010, The annals of applied statistics.

[327]  Anthony C. Davison,et al.  High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust , 2012 .

[328]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[329]  J. Idier,et al.  Penalized Maximum Likelihood Estimator for Normal Mixtures , 2000 .

[330]  W. Krzanowski,et al.  A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering , 1988 .

[331]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[332]  Tim Hellmann,et al.  On the existence and uniqueness of pairwise stable networks , 2013, Int. J. Game Theory.

[333]  Allan Sly,et al.  Random graphs with a given degree sequence , 2010, 1005.1136.

[334]  J. Hagedoorn Inter-firm R&D partnerships: an overview of major trends and patterns since 1960 , 2002 .

[335]  L. Shapley,et al.  Potential Games , 1994 .

[336]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[337]  Allan Sly,et al.  Mixing time of exponential random graphs. , 2011 .

[338]  Gary Chamberlain,et al.  Analysis of Covariance with Qualitative Data , 1979 .

[339]  G. Celeux,et al.  Variable Selection for Clustering with Gaussian Mixture Models , 2009, Biometrics.

[340]  Charles Bouveyron,et al.  Simultaneous model-based clustering and visualization in the Fisher discriminative subspace , 2011, Statistics and Computing.

[341]  Gilles Celeux,et al.  Variable selection in model-based clustering: A general variable role modeling , 2009, Comput. Stat. Data Anal..

[342]  F. Leisch FlexMix: A general framework for finite mixture models and latent class regression in R , 2004 .

[343]  Ove Frank,et al.  Composition and structure of social networks , 1997 .

[344]  A W EDWARDS,et al.  A METHOD FOR CLUSTER ANALYSIS. , 1965, Biometrics.

[345]  S. Janson,et al.  The asymptotic distributions of generalized U-statistics with applications to random graphs , 1991 .

[346]  Stéphane Robin,et al.  Hidden Markov Models with mixtures as emission distributions , 2012, Statistics and Computing.

[347]  Geoffrey J. McLachlan,et al.  Finite mixtures of multivariate skew t-distributions: some recent and new results , 2014, Stat. Comput..

[348]  Daniel N. Rockmore,et al.  Analysis of the U.S. patient referral network , 2017, Statistics in medicine.

[349]  Tsung-I Lin,et al.  Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition , 2014, Comput. Stat. Data Anal..

[350]  Julien Jacques,et al.  Evolutionary clustering for categorical data using parametric links among multinomial mixture models , 2017 .

[351]  Julien Jacques,et al.  Functional data clustering: a survey , 2013, Advances in Data Analysis and Classification.

[352]  J. Zubin A technique for measuring like-mindedness. , 1938 .

[353]  Luis Angel García-Escudero,et al.  tclust: An R Package for a Trimming Approach to Cluster Analysis , 2012 .

[354]  C. Hennig,et al.  Maximum likelihood estimation of heterogeneous mixtures of Gaussian and uniform distributions , 2011 .

[355]  Luis Angel García-Escudero,et al.  Finding the Number of Normal Groups in Model-Based Clustering via Constrained Likelihoods , 2018 .

[356]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[357]  M. Arellano,et al.  Another look at the instrumental variable estimation of error-components models , 1995 .

[358]  Tom A. B. Snijders,et al.  Non-parametric standard errors and tests for network statistics , 1999 .

[359]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[360]  G. Govaert,et al.  Latent Block Model for Contingency Table , 2010 .

[361]  C. Robert,et al.  Estimating Mixtures of Regressions , 2003 .

[362]  Adrian E. Raftery,et al.  Model‐based methods for textile fault detection , 1999 .

[363]  J. Hagenaars Latent Structure Models with Direct Effects between Indicators , 1988 .

[364]  Bryan W. Brown,et al.  Efficient Semiparametric Estimation of Expectations , 1998 .

[365]  Adrian E. Raftery,et al.  Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering , 2007, J. Classif..

[366]  Christophe Ambroise,et al.  Fast online graph clustering via Erdös-Rényi mixture , 2008, Pattern Recognit..

[367]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[368]  Matthew O. Jackson,et al.  Definitions of equilibrium in network formation games , 2006, Int. J. Game Theory.

[369]  Claude Manté,et al.  Cokriging for spatial functional data , 2010, J. Multivar. Anal..

[370]  A. Colin Cameron,et al.  Estimation of Country-Pair Data Models Controlling for Clustered Errors: with International Trade Applications , 2005 .

[371]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[372]  Stéphane Mallat,et al.  Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity , 2010, IEEE Transactions on Image Processing.

[373]  A. Raftery,et al.  Variable Selection for Model-Based Clustering , 2006 .

[374]  Brent Henderson,et al.  Exploring between site differences in water quality trends: a functional data analysis approach , 2006 .

[375]  James J. Heckman,et al.  Longitudinal Analysis of Labor Market Data , 1985 .

[376]  Adrian E. Raftery,et al.  Incremental Model-Based Clustering for Large Datasets With Small Clusters , 2005 .

[377]  Lucas Goodman,et al.  The Effect of the Affordable Care Act Medicaid Expansion on Migration. , 2017, Journal of policy analysis and management : [the journal of the Association for Public Policy Analysis and Management].

[378]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[379]  L. Blume The Statistical Mechanics of Strategic Interaction , 1993 .

[380]  O. Barndorff-Nielsen,et al.  Normal Variance-Mean Mixtures and z Distributions , 1982 .

[381]  John Mingers,et al.  An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.

[382]  Koen Jochmans,et al.  Semiparametric Analysis of Network Formation , 2018 .

[383]  S. Morgan Handbook of Causal Analysis for Social Research , 2013 .

[384]  Tsung-I Lin,et al.  Robust statistical modelling using the multivariate skew t distribution with complete and incomplete data , 2011 .

[385]  T. Pavlenko,et al.  Effect of dimensionality on discrimination , 2001 .

[386]  Vasco M. Carvalho,et al.  The Network Origins of Aggregate Fluctuations , 2011 .

[387]  Salvatore Ingrassia,et al.  flexCWM: A Flexible Framework for Cluster-Weighted Models , 2018 .

[388]  D. Stephens,et al.  A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes , 2006 .

[389]  J. Aitchison,et al.  Multivariate binary discrimination by the kernel method , 1976 .

[390]  N. Cressie Fitting variogram models by weighted least squares , 1985 .

[391]  Haesun Park,et al.  Generalizing discriminant analysis using the generalized singular value decomposition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[392]  H. P. Friedman,et al.  On Some Invariant Criteria for Grouping Data , 1967 .

[393]  Tom A. B. Snijders,et al.  Markov Chain Monte Carlo Estimation of Exponential Random Graph Models , 2002, J. Soc. Struct..

[394]  P. Dooley The Interlocking Directorate , 1969 .

[395]  M. Genton,et al.  Multivariate extended skew-t distributions and related families , 2010 .

[396]  Bryan S. Graham,et al.  Identifying and Estimating Neighborhood Effects , 2016, Journal of Economic Literature.

[397]  A.R. Runnalls,et al.  A Kullback-Leibler Approach to Gaussian Mixture Reduction , 2007 .

[398]  Joseph N. Wilson,et al.  Twenty Years of Mixture of Experts , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[399]  Dimitris Karlis,et al.  Model-based clustering with non-elliptically contoured distributions , 2009, Stat. Comput..

[400]  Charles Bouveyron,et al.  Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm , 2012, J. Multivar. Anal..

[401]  C. F. Stevens,et al.  A Bayesian Approach to Short-term Forecasting , 1971 .

[402]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[403]  Heungsun Hwang,et al.  Dimension-Reduced Clustering of Functional Data via Subspace Separation , 2017, Journal of Classification.

[404]  Bruce S. Davie,et al.  Computer Networks: A Systems Approach , 1996 .

[405]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[406]  A. Rose,et al.  Which International Institutions Promote International Trade? , 2003 .

[407]  Raphael Gottardo,et al.  flowClust: a Bioconductor package for automated gating of flow cytometry data , 2009, BMC Bioinformatics.

[408]  Jia Li,et al.  Variable Selection for Clustering by Separability Based on Ridgelines , 2012 .

[409]  Pierrick Bruneau,et al.  Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach , 2010, Pattern Recognit..

[410]  Martin A. Tanner,et al.  Modelling nonlinear count time series with local mixtures of Poisson autoregressions , 2007, Comput. Stat. Data Anal..

[411]  Robert Tibshirani,et al.  A Framework for Feature Selection in Clustering , 2010, Journal of the American Statistical Association.

[412]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[413]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[414]  Adrian O’Hagan,et al.  Improved model-based clustering performance using Bayesian initialization averaging , 2015, Computational Statistics.

[415]  Guido W. Imbens,et al.  Complementarity and Aggregate Implications of Assortative Matching: A Nonparametric Analysis , 2009 .

[416]  John S. Ahlquist,et al.  Model-based Clustering and Typologies in the Social Sciences , 2012, Political Analysis.

[417]  Stanley Wasserman,et al.  Random directed graph distributions and the triad census in social networks , 1977 .

[418]  H. Akaike A new look at the statistical model identification , 1974 .

[419]  Torsten Persson,et al.  Advances in Economics and Econometrics , 2007 .

[420]  Raphael Gottardo,et al.  Automated gating of flow cytometry data via robust model‐based clustering , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[421]  G. J. Babu,et al.  Three Types of Gamma-Ray Bursts , 1998, astro-ph/9802085.

[422]  Fengchun Peng,et al.  Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts Models With an Applic , 1996 .

[423]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[424]  Arun G. Chandrasekhar,et al.  Econometrics of Network Formation , 2016 .

[425]  P. Guttorp,et al.  A space-time analysis of ground-level ozone data , 1994 .

[426]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[427]  P. Bickel,et al.  The method of moments and degree distributions for network models , 2011, 1202.5101.

[428]  Arun G. Chandrasekhar,et al.  Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia , 2012 .

[429]  Tengfei Liu,et al.  Model-based clustering of high-dimensional data: Variable selection versus facet determination , 2013, Int. J. Approx. Reason..

[430]  Adrian E. Raftery,et al.  Model-based clustering and data transformations for gene expression data , 2001, Bioinform..

[431]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[432]  L. K. Hansen,et al.  The Error-Reject Tradeoff , 1997 .

[433]  Andreas Dzemski,et al.  An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity , 2018, Review of Economics and Statistics.

[434]  Cristiano Varin,et al.  A Model for Correlated Paired Comparison Data , 2013 .

[435]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[436]  Bernard Fortin,et al.  Identification of Peer Effects through Social Networks , 2007, SSRN Electronic Journal.

[437]  Costas Meghir,et al.  Risk Pooling, Risk Preferences, and Social Networks , 2012 .

[438]  A. Wald On a Statistical Problem Arising in the Classification of an Individual into One of Two Groups , 1944 .

[439]  G. Celeux,et al.  Regularization in discriminant analysis: an overview , 1997 .

[440]  Petros Dellaportas,et al.  Bayesian classification of Neolithic tools , 2008 .

[441]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[442]  Xavier D'Haultfoeuille,et al.  Empirical process results for exchangeable arrays , 2019, The Annals of Statistics.

[443]  M. Stephens Dealing with label switching in mixture models , 2000 .

[444]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[445]  Volodymyr Melnykov,et al.  ClickClust: An R Package for Model-Based Clustering of Categorical Sequences , 2016 .

[446]  Mário A. T. Figueiredo,et al.  Feature selection for clustering categorical data with an embedded modelling approach , 2015, Expert Syst. J. Knowl. Eng..

[447]  J. Angrist,et al.  The Perils of Peer Effects , 2013 .

[448]  M Giacofci,et al.  Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension , 2011, Biometrics.

[449]  Bryan S. Graham,et al.  Kernel density estimation for undirected dyadic data , 2019, Journal of Econometrics.

[450]  Geoffrey J. McLachlan,et al.  Comment on "On Nomenclature, and the Relative Merits of Two Formulations of Skew Distributions" by A. Azzalini, R. Browne, M. Genton, and P. McNicholas , 2016, 1601.00773.

[451]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[452]  J. Tinbergen Shaping the World Economy: Suggestions for an International Economic Policy , 1964 .

[453]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[454]  Art B. Owen,et al.  THE PIGEONHOLE BOOTSTRAP , 2007, 0712.1111.

[455]  October I Physical Review Letters , 2022 .

[456]  Stephen E. Fienberg,et al.  Statistical Inference in a Directed Network Model With Covariates , 2016, Journal of the American Statistical Association.

[457]  Lingjiong Zhu,et al.  Approximate Variational Estimation for a Model of Network Formation , 2017, Review of Economics and Statistics.

[458]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[459]  G. Gaulier,et al.  BACI: International Trade Database at the Product-Level (the 1994-2007 Version) , 2009 .

[460]  Max Tabord-Meehan,et al.  Inference With Dyadic Data: Asymptotic Behavior of the Dyadic-Robust t-Statistic , 2015, Journal of Business & Economic Statistics.

[461]  M. Jackson,et al.  A Strategic Model of Social and Economic Networks , 1996 .

[462]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[463]  Adrian E. Raftery,et al.  Bayesian inference for multiband image segmentation via model-based cluster trees , 2005, Image Vis. Comput..

[464]  I. C. Gormley,et al.  A mixture of experts model for rank data with applications in election studies , 2008, 0901.4203.

[465]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[466]  Charles Bouveyron,et al.  The latent topic block model for the co-clustering of textual interaction data , 2019, Comput. Stat. Data Anal..

[467]  Michael P. Leung,et al.  Two-Step Estimation of Network-Formation Models with Incomplete Information , 2015 .

[468]  Bryan S. Graham,et al.  Taxing high-income earners: tax avoidance and mobility , 2016 .

[469]  Paul D. McNicholas,et al.  Model-Based Clustering , 2016, Journal of Classification.

[470]  Eric C. Chi,et al.  Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties , 2013, Comput. Stat. Data Anal..

[471]  Matthew O. Jackson,et al.  The Existence of Pairwise Stable Networks , 2002 .

[472]  E. Xing,et al.  A state-space mixed membership blockmodel for dynamic network tomography , 2008, 0901.0135.

[473]  R. Burt Structural Holes and Good Ideas1 , 2004, American Journal of Sociology.

[474]  Gilles Celeux,et al.  Variable selection in model-based discriminant analysis , 2011, J. Multivar. Anal..

[475]  A. Jaffe Technological Opportunity and Spillovers of R&D: Evidence from Firms&Apos; Patents, Profits and Market Value , 1986 .

[476]  Satoru Miyano,et al.  ArrayCluster: an analytic tool for clustering, data visualization and module finder on gene expression profiles , 2006, Bioinform..

[477]  E. Levina,et al.  Pairwise Variable Selection for High‐Dimensional Model‐Based Clustering , 2010, Biometrics.

[478]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[479]  Franck Picard,et al.  Assessing the Exceptionality of Network Motifs , 2007, J. Comput. Biol..

[480]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[481]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[482]  Ryan P. Browne,et al.  A mixture of SDB skew-t factor analyzers , 2013, 1310.6224.

[483]  Gilles Celeux,et al.  Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models , 2015, Bioinform..

[484]  D. Defays,et al.  An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..

[485]  Paul D. McNicholas,et al.  A LASSO-penalized BIC for mixture model selection , 2012, Advances in Data Analysis and Classification.

[486]  Guido W. Imbens,et al.  Identification and Efficiency Bounds for the Average Match Function Under Conditionally Exogenous Matching , 2018, Journal of Business & Economic Statistics.

[487]  Bryan S. Graham,et al.  Comparative Static and Computational Methods for an Empirical One-to-one Transferable Utility Matching Model , 2013 .

[488]  M. Brusco,et al.  Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures , 2008 .

[489]  Michael Salter-Townshend,et al.  Role Analysis in Networks Using Mixtures of Exponential Random Graph Models , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[490]  P. McNicholas,et al.  Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant , 2011 .

[491]  Jess Benhabib,et al.  Handbook of Social Economics , 2011 .

[492]  Geoffrey J. McLachlan,et al.  Model-based clustering and classification with non-normal mixture distributions , 2013, Stat. Methods Appl..

[493]  Douglas M. Hawkins,et al.  High-Breakdown Linear Discriminant Analysis , 1997 .

[494]  Martina Morris,et al.  statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data. , 2008, Journal of statistical software.

[495]  S. Sahu,et al.  A new class of multivariate skew distributions with applications to bayesian regression models , 2003 .

[496]  Irene Vrbik,et al.  Analytic calculations for the EM algorithm for multivariate skew-t mixture models , 2012 .

[497]  Gérard Govaert,et al.  Gaussian parsimonious clustering models , 1995, Pattern Recognit..

[498]  G. Davis,et al.  Erratum for “Who Killed the Inner Circle? The Decline of the American Corporate Interlock Network” , 2016, American Journal of Sociology.

[499]  Giorgio Vittadini,et al.  Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions , 2012, J. Classif..

[500]  S. Grossberg,et al.  Psychological Review , 2003 .

[501]  A. Montanari,et al.  Heteroscedastic factor mixture analysis , 2010 .

[502]  Thomas Brendan Murphy,et al.  Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler , 2014, Statistics and Computing.

[503]  P. Janssen Weighted bootstrapping of U-statistics , 1994 .

[504]  Gary Chamberlain,et al.  Longitudinal Analysis of Labor Market Data: Heterogeneity, omitted variable bias, and duration dependence , 1985 .

[505]  Yasubumi Sakakibara,et al.  Noise-Tolerant Occam Algorithms and Their Applications to Learning Decision Trees , 1993, Machine Learning.

[506]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[507]  A. Raftery,et al.  Model-based Region-of-interest Selection in Dynamic Breast MRI , 2006, Journal of computer assisted tomography.

[508]  Adrian E. Raftery,et al.  Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models , 2009, Soc. Networks.

[509]  Stephen J. Roberts,et al.  A Probabilistic Resource Allocating Network for Novelty Detection , 1994, Neural Computation.

[510]  Robert Tibshirani,et al.  Cluster Validation by Prediction Strength , 2005 .

[511]  John F. Padgett,et al.  Robust Action and the Rise of the Medici, 1400-1434 , 1993, American Journal of Sociology.

[512]  Ufuk Akcigit,et al.  Innovation network , 2016, Proceedings of the National Academy of Sciences.

[513]  M. Tanner,et al.  Mixtures of proportional hazards regression models. , 1999, Statistics in medicine.

[514]  Gérard Govaert,et al.  A predictive deviance criterion for selecting a generative model in semi-supervised classification , 2013, Comput. Stat. Data Anal..

[515]  Adrian E. Raftery,et al.  Inference in model-based cluster analysis , 1997, Stat. Comput..

[516]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[517]  Lori Beaman,et al.  Social Networks and the Dynamics of Labour Market Outcomes: Evidence from Refugees Resettled in the U.S , 2012 .

[518]  G. Reaven,et al.  An attempt to define the nature of chemical diabetes using a multidimensional analysis , 2004, Diabetologia.

[519]  Sharon X. Lee,et al.  EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm , 2012, 1211.5290.

[520]  Gérard Govaert,et al.  Model-based cluster and discriminant analysis with the MIXMOD software , 2006, Comput. Stat. Data Anal..

[521]  Steven N. Durlauf,et al.  Linear Social Interactions Models , 2013, Journal of Political Economy.

[522]  Geoffrey J. McLachlan,et al.  Mixtures of Factor Analyzers with Common Factor Loadings: Applications to the Clustering and Visualization of High-Dimensional Data , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[523]  Ryan P. Browne,et al.  A mixture of generalized hyperbolic distributions , 2013, 1305.1036.

[524]  Andrew B. Bernard,et al.  Geography and Firm Performance in the Japanese Production Network , 2014 .

[525]  Charles Bouveyron,et al.  Adaptive Mixture Discriminant Analysis for Supervised Learning with Unobserved Classes , 2014, Journal of Classification.

[526]  Gilles Celeux,et al.  Variable selection in model-based clustering and discriminant analysis with a regularization approach , 2017, Advances in Data Analysis and Classification.

[527]  Neil J. Hurley,et al.  Computational Statistics and Data Analysis , 2022 .

[528]  Gary Chamberlain,et al.  Efficiency Bounds for Semiparametric Regression , 1992 .

[529]  Jiahua Chen,et al.  Inference for multivariate normal mixtures , 2008, J. Multivar. Anal..

[530]  Ryan P. Browne,et al.  Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models , 2014, Journal of Classification.

[531]  Amir Dembo,et al.  Nonlinear large deviations , 2014, 1401.3495.

[532]  Svante Janson,et al.  Threshold Graph Limits and Random Threshold Graphs , 2008, Internet Math..

[533]  M. Gallegos,et al.  A robust method for cluster analysis , 2005, math/0504513.

[534]  Bryan S. Graham,et al.  Identifying Social Interactions Through Conditional Variance Restrictions , 2008 .

[535]  Charles Bouveyron,et al.  Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA , 2011, Pattern Recognit. Lett..

[536]  Panle Jia,et al.  What Happens When Wal‐Mart Comes to Town: An Empirical Analysis of the Discount Retailing Industry , 2008 .

[537]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[538]  G. Celeux,et al.  An entropy criterion for assessing the number of clusters in a mixture model , 1996 .

[539]  M. Vannucci,et al.  Bayesian Variable Selection in Clustering High-Dimensional Data , 2005 .

[540]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[541]  Hsiu J. Ho,et al.  Analysis of multivariate skew normal models with incomplete data , 2009, J. Multivar. Anal..

[542]  Charles Bouveyron,et al.  The functional latent block model for the co‐clustering of electricity consumption curves , 2018 .

[543]  Geoffrey J. McLachlan,et al.  Criterion for Selecting Variables for Linear Discriminant Function , 1976 .

[544]  Katie Evans,et al.  Outlier Identification in Model-Based Cluster Analysis , 2015, Journal of Classification.

[545]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[546]  Pavel N Krivitsky,et al.  Fitting Position Latent Cluster Models for Social Networks with latentnet. , 2008, Journal of statistical software.

[547]  George Iliopoulos,et al.  An Artificial Allocations Based Solution to the Label Switching Problem in Bayesian Analysis of Mixtures of Distributions , 2010 .

[548]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[549]  Salvatore Ingrassia,et al.  Constrained monotone EM algorithms for finite mixture of multivariate Gaussians , 2007, Comput. Stat. Data Anal..

[550]  Jonathan A. Rebhahn,et al.  SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 2: Biological Evaluation , 2014, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[551]  Jianhua Zhao,et al.  Mixture model selection via hierarchical BIC , 2015, Comput. Stat. Data Anal..

[552]  Harry Crane,et al.  Probabilistic Foundations of Statistical Network Analysis , 2018 .

[553]  Gerald F. Davis,et al.  The Significance of Board Interlocks for Corporate Governance , 1996 .

[554]  John W. Sammon,et al.  An Optimal Set of Discriminant Vectors , 1975, IEEE Transactions on Computers.

[555]  Paul D. McNicholas,et al.  Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model , 2014, J. Classif..

[556]  M. Jackson,et al.  An Economic Model of Friendship: Homophily, Minorities and Segregation , 2007 .

[557]  A James O'Malley,et al.  Mapping physician networks with self-reported and administrative data. , 2011, Health services research.

[558]  Xiangyu Chang,et al.  Asymptotic Normality of Maximum Likelihood and its Variational Approximation for Stochastic Blockmodels , 2012, ArXiv.

[559]  Geoffrey J. McLachlan,et al.  Robust mixture modelling using the t distribution , 2000, Stat. Comput..

[560]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[561]  Ryan P. Browne,et al.  Comparing two formulations of skew distributions with special reference to model-based clustering , 2014 .

[562]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[563]  Anna Maria Mayda,et al.  International migration: a panel data analysis of the determinants of bilateral flows , 2007 .

[564]  Robert S. Erikson,et al.  Dyadic Analysis in International Relations: A Cautionary Tale , 2012, Political Analysis.

[565]  A. Raftery,et al.  Model-Based Clustering With Dissimilarities: A Bayesian Approach , 2007 .

[566]  A. Raftery,et al.  Nearest-Neighbor Variance Estimation (NNVE) , 2002 .

[567]  David J. Miller,et al.  A Mixture Model and EM-Based Algorithm for Class Discovery, Robust Classification, and Outlier Rejection in Mixed Labeled/Unlabeled Data Sets , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[568]  Yihong Gong,et al.  Detecting communities and their evolutions in dynamic social networks—a Bayesian approach , 2011, Machine Learning.

[569]  Anton Badev,et al.  Discrete Games in Endogenous Networks: Equilibria and Policy , 2017, ArXiv.

[570]  Emmanuel Dhyne,et al.  The Belgian production network 2002-2012 , 2015 .

[571]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[572]  F. Leisch,et al.  FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters , 2008 .

[573]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[574]  L. Tajoli,et al.  Network Analysis of World Trade using the BACI-CEPII Dataset , 2014 .

[575]  Yannis M. Ioannides,et al.  Identification of Social Interactions , 2010 .

[576]  Chao Gao,et al.  Testing Network Structure Using Relations Between Small Subgraph Probabilities , 2017, ArXiv.

[577]  Joachim De Weerdt,et al.  Risk-Sharing and Endogenous Network Formation , 2002 .

[578]  Iftekhar Naim,et al.  SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 1: Algorithm Design , 2014, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[579]  Adrian E. Raftery,et al.  Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST , 2003, J. Classif..

[580]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[581]  Cosma Rohilla Shalizi,et al.  Bootstrapping exchangeable random graphs , 2017, Electronic Journal of Statistics.

[582]  Maria Meehan,et al.  Contrasting prediction methods for early warning systems at undergraduate level , 2016, Internet High. Educ..

[583]  I JordanMichael,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008 .

[584]  Geoffrey J. McLachlan,et al.  Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution , 2007, Comput. Stat. Data Anal..

[585]  R. Kranton,et al.  A Theory of Buyer-Seller Networks , 2001 .

[586]  G. Celeux,et al.  Clustering criteria for discrete data and latent class models , 1991 .

[587]  Paul D. McNicholas,et al.  teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution , 2018 .

[588]  Daria Taglioni,et al.  Trade Effects of the Euro: a Comparison of Estimators , 2007 .

[589]  Christophe Ambroise,et al.  Variational Bayesian inference and complexity control for stochastic block models , 2009, 0912.2873.

[590]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[591]  Bo E. Honoré,et al.  Pairwise difference estimators of censored and truncated regression models , 1994 .

[592]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[593]  B. Mallick,et al.  Functional clustering by Bayesian wavelet methods , 2006 .

[594]  Bryan S. Graham,et al.  A ug 2 01 9 Dyadic Regression August 27 , 2019 , 2019 .

[595]  G. Celeux,et al.  Comparison of the mixture and the classification maximum likelihood in cluster analysis , 1993 .

[596]  Hyungsik Roger Moon,et al.  Normal Approximation in Large Network Models , 2019, SSRN Electronic Journal.

[597]  Han Hong,et al.  Identification and Estimation of a Discrete Game of Complete Information , 2010 .

[598]  Luca Scrucca,et al.  clustvarsel: A Package Implementing Variable Selection for Gaussian Model-Based Clustering in R. , 2018, Journal of statistical software.

[599]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[600]  Christian Hennig,et al.  What are the true clusters? , 2015, Pattern Recognit. Lett..

[601]  P. McNicholas,et al.  Extending mixtures of multivariate t-factor analyzers , 2011, Stat. Comput..

[602]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[603]  P. Latouche,et al.  Overlapping stochastic block models with application to the French political blogosphere , 2009, 0910.2098.

[604]  William Nick Street,et al.  Breast Cancer Diagnosis and Prognosis Via Linear Programming , 1995, Oper. Res..

[605]  Ka Yee Yeung,et al.  Model-Based Clustering With Data Correction For Removing Artifacts In Gene Expression Data. , 2016, The annals of applied statistics.

[606]  P. Holland,et al.  Local Structure in Social Networks , 1976 .

[607]  Thomas Brendan Murphy,et al.  Variational Bayesian inference for the Latent Position Cluster Model , 2009, NIPS 2009.

[608]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[609]  Charles Bouveyron,et al.  Model-based clustering of time series in group-specific functional subspaces , 2011, Adv. Data Anal. Classif..

[610]  Rebecka Jörnsten,et al.  Mixture models with multiple levels, with application to the analysis of multifactor gene expression data. , 2008, Biostatistics.

[611]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[612]  M. Ostrovsky Stability in Supply Chain Networks , 2005 .

[613]  B. Graham An Econometric Model of Network Formation With Degree Heterogeneity , 2017 .

[614]  Gilles Celeux,et al.  Discrete regularized discriminant analysis , 1992 .

[615]  Noël Veraverbeke,et al.  The Order of the Normal Approximation for a Studentized $U$-Statistic , 1981 .

[616]  Roger V. Gould,et al.  Structures of Mediation: A Formal Approach to Brokerage in Transaction Networks , 1989 .

[617]  Michael Wolf,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011 .

[618]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[619]  Florence Forbes,et al.  A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering , 2013, Statistics and Computing.

[620]  Thomas Brendan Murphy,et al.  Mixture of latent trait analyzers for model-based clustering of categorical data , 2013, Statistics and Computing.

[621]  Yizhou Sun,et al.  iTopicModel: Information Network-Integrated Topic Modeling , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[622]  Vincent Vandewalle,et al.  Model-Based Clustering for Conditionally Correlated Categorical Data , 2014, Journal of Classification.

[623]  Thomas Brendan Murphy,et al.  Variable Selection for Latent Class Analysis with Application to Low Back Pain Diagnosis , 2015, 1512.03350.

[624]  Olvi L. Mangasarian,et al.  Nuclear feature extraction for breast tumor diagnosis , 1993, Electronic Imaging.

[625]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[626]  Jarrad Harford,et al.  The Importance of Industry Links in Merger Waves , 2012 .

[627]  Gilles Celeux,et al.  Combining Mixture Components for Clustering , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[628]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[629]  Giorgio Vittadini,et al.  The Generalized Linear Mixed Cluster-Weighted Model , 2015, Journal of Classification.

[630]  Halima Bensmail,et al.  Model-based Clustering with Noise: Bayesian Inference and Estimation , 2003, J. Classif..

[631]  Matthew Brand,et al.  Structure Learning in Conditional Probability Models via an Entropic Prior and Parameter Extinction , 1999, Neural Computation.

[632]  Gilles Celeux,et al.  A Component-Wise EM Algorithm for Mixtures , 2001, 1201.5913.

[633]  Michael P. Leung A Weak Law for Moments of Pairwise Stable Networks , 2019, Journal of Econometrics.

[634]  Peter M. Aronow,et al.  Cluster–Robust Variance Estimation for Dyadic Data , 2013, Political Analysis.

[635]  Dorothy T. Thayer,et al.  EM algorithms for ML factor analysis , 1982 .

[636]  Krzysztof Nowicki,et al.  Asymptotic distributions in random graphs with applications to social networks , 1991 .

[637]  Charles Bouveyron,et al.  Model-based clustering of high-dimensional data: A review , 2014, Comput. Stat. Data Anal..

[638]  Oskar Nordström Skans,et al.  Social Networks, Employee Selection, and Labor Market Outcomes , 2016, Journal of Labor Economics.

[639]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[640]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[641]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[642]  J. Coleman,et al.  Social Capital in the Creation of Human Capital , 1988, American Journal of Sociology.

[643]  D.J. Salmond,et al.  Mixture Reduction Algorithms for Point and Extended Object Tracking in Clutter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[644]  J. Friedman Regularized Discriminant Analysis , 1989 .

[645]  Carl Nadler,et al.  Networked Inequality : Evidence from Freelancers , 2016 .

[646]  Ove Frank,et al.  Triad count statistics , 1988, Discret. Math..

[647]  Alfred Galichon,et al.  The Econometrics and Some Properties of Separable Matching Models , 2017 .

[648]  Marcel Fafchamps,et al.  Risk Sharing Networks in Rural Philippines , 1997 .

[649]  N. Christakis,et al.  Social Networks and Cooperation in Hunter-Gatherers , 2011, Nature.

[650]  Yiu-ming Cheung,et al.  Learning a mixture model for clustering with the completed likelihood minimum message length criterion , 2014, Pattern Recognit..

[651]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[652]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[653]  Ji Zhu,et al.  Variable Selection for Model‐Based High‐Dimensional Clustering and Its Application to Microarray Data , 2008, Biometrics.

[654]  S. Janson,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[655]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..

[656]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[657]  D. Cox The Regression Analysis of Binary Sequences , 1958 .

[658]  W. Grove,et al.  A latent trait finite mixture model for the analysis of rating agreement. , 1993, Biometrics.

[659]  S. Wood Thin plate regression splines , 2003 .

[660]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[661]  Journal of Molecular Biology , 1959, Nature.

[662]  Ricardo Fraiman,et al.  Selection of Variables for Cluster Analysis and Classification Rules , 2006, math/0610757.

[663]  Rui Araújo,et al.  Mixture of partial least squares experts and application in prediction settings with multiple operating modes , 2014 .

[664]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[665]  A. Raftery,et al.  Detecting features in spatial point processes with clutter via model-based clustering , 1998 .

[666]  Yi-Qing Wang,et al.  E-PLE: an Algorithm for Image Inpainting , 2013, Image Process. Line.

[667]  Persi Diaconis,et al.  A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees , 2011, Internet Math..

[668]  Charles Bouveyron,et al.  The dynamic stochastic topic block model for dynamic networks with textual edges , 2018, Statistics and Computing.

[669]  Lu Mao,et al.  On causal estimation using $U$-statistics , 2018 .

[670]  Friedrich Leisch,et al.  Fitting finite mixtures of generalized linear regressions in R , 2007, Comput. Stat. Data Anal..

[671]  Georg Simmel Soziologie: Untersuchungen Über Die Formen Der Vergesellschaftung , 2009 .

[672]  A. Raftery Bayes Factors and BIC , 1999 .

[673]  Charles Bouveyron,et al.  The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul , 2012, 1212.5497.

[674]  James Roberts,et al.  Network structure of production , 2011, Proceedings of the National Academy of Sciences.

[675]  M. Newman Community detection in networks: Modularity optimization and maximum likelihood are equivalent , 2016, Physical review. E.

[676]  P. Bickel,et al.  Subsampling bootstrap of count features of networks , 2013, 1312.2645.

[677]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[678]  Bart Minten,et al.  Returns to Social Network Capital Among Traders , 2002 .

[679]  Julien Jacques,et al.  Funclust: A curves clustering method using functional random variables density approximation , 2013, Neurocomputing.

[680]  Harry Crane,et al.  RELATIVELY EXCHANGEABLE STRUCTURES , 2015, The Journal of Symbolic Logic.

[681]  Yves Zenou,et al.  R&D Networks: Theory, Empirics, and Policy Implications , 2014, Review of Economics and Statistics.

[682]  N. Longford,et al.  A confusion index for measuring separation and clustering , 2014 .

[683]  Jorge Mateu,et al.  Hierarchical clustering of spatially correlated functional data , 2012 .

[684]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[685]  Thomas Brendan Murphy,et al.  Mixed-membership of experts stochastic blockmodel , 2014, Network Science.

[686]  E. Lehmann Elements of large-sample theory , 1998 .

[687]  Jia Li Clustering Based on a Multilayer Mixture Model , 2005 .

[688]  Adrian E. Raftery,et al.  Fitting straight lines to point patterns , 1984, Pattern Recognit..

[689]  R. Brinkman,et al.  High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. , 2007, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[690]  M. Greenacre,et al.  Multiple Correspondence Analysis and Related Methods , 2006 .

[691]  Michelle A. Steane,et al.  Model-Based Classification via Mixtures of Multivariate t-Factor Analyzers , 2012, Commun. Stat. Simul. Comput..

[692]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[693]  David Blei,et al.  Probabilistic topic models , 2011, KDD '11 Tutorials.