Species mtDNA genetic diversity explained by infrapopulation size in a host‐symbiont system

Abstract Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host‐symbiont systems. Here, we studied mtDNA variation in a host‐symbiont non‐model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star‐like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.

[1]  R. Jovani,et al.  DNA barcoding and minibarcoding as a powerful tool for feather mite studies , 2015, Molecular ecology resources.

[2]  R. Jovani,et al.  NGS metabarcoding proves successful for quantitative assessment of symbiont abundance: the case of feather mites on birds , 2015, Experimental and Applied Acarology.

[3]  A. Vogler,et al.  Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles , 2015, Proceedings of the Royal Society B: Biological Sciences.

[4]  S. Planes,et al.  Endemic and widespread coral reef fishes have similar mitochondrial genetic diversity , 2014, Proceedings of the Royal Society B: Biological Sciences.

[5]  S. Coulson,et al.  Differences in speciation progress in feather mites (Analgoidea) inhabiting the same host: the case of Zachvatkinia and Alloptes living on arctic and long-tailed skuas , 2014, Experimental and Applied Acarology.

[6]  A. Møller,et al.  Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds , 2014, PloS one.

[7]  L. Duret,et al.  Comparative population genomics in animals uncovers the determinants of genetic diversity , 2014, Nature.

[8]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[9]  P. Andolfatto,et al.  Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? , 2012, PLoS biology.

[10]  A. Møller,et al.  Feather mites (Acari: Astigmata) and body condition of their avian hosts: a large correlative study , 2012 .

[11]  E. Murphy,et al.  On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals , 2012, Heredity.

[12]  Matthew E. Wolak,et al.  Guidelines for estimating repeatability , 2012 .

[13]  Alan Hodgkinson,et al.  Variation in the mutation rate across mammalian genomes , 2011, Nature Reviews Genetics.

[14]  L. Keller,et al.  A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites , 2011, BMC Evolutionary Biology.

[15]  P. Klimov,et al.  Estimating phylogenetic relationships despite discordant gene trees across loci: the species tree of a diverse species group of feather mites (Acari: Proctophyllodidae) , 2011, Parasitology.

[16]  D. Harris,et al.  When selection deceives phylogeographic interpretation: the case of the Mediterranean house gecko, Hemidactylus turcicus (Linnaeus, 1758). , 2011, Molecular phylogenetics and evolution.

[17]  Liam J. Revell,et al.  Phylogenetic signal and linear regression on species data , 2010 .

[18]  P. Bentzen,et al.  Positive relationships between genetic diversity and abundance in fishes , 2010, Molecular ecology.

[19]  M. Dabert,et al.  Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. , 2010, Molecular Phylogenetics and Evolution.

[20]  E. Paradis pegas: an R package for population genetics with an integrated-modular approach , 2010, Bioinform..

[21]  D. Irwin,et al.  Mitochondrial introgression and replacement between yellowhammers (Emberiza citrinella) and pine buntings (Emberiza leucocephalos) (Aves: Passeriformes) , 2009 .

[22]  S. V. Mironov,et al.  A New Species of the Genus Proctophyllodes (Analgoidea: Proctophyllodidae) from Cetti's Warbler Cettia cetti (Passeriformes: Sylviidae) with DNA Barcode Data , 2008 .

[23]  M. Dabert,et al.  Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari) , 2008, Zootaxa.

[24]  J. S. Monrós,et al.  Feather mites and birds: an interaction mediated by uropygial gland size? , 2008, Journal of evolutionary biology.

[25]  P. Palange,et al.  From the authors , 2007, European Respiratory Journal.

[26]  R. Poulin,et al.  The scaling of total parasite biomass with host body mass. , 2007, International journal for parasitology.

[27]  T. F. Hansen The Evolution of Genetic Architecture , 2006 .

[28]  A. Dobson,et al.  Parasites dominate food web links. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Rodríguez-Valera,et al.  Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. , 2006, FEMS microbiology ecology.

[30]  Christian Brochmann,et al.  Refugia, differentiation and postglacial migration in arctic‐alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.) , 2006, Molecular ecology.

[31]  J. Cheverud,et al.  THE EVOLUTION OF GENETIC ARCHITECTURE. I. DIVERSIFICATION OF GENETIC BACKGROUNDS BY GENETIC DRIFT , 2005, Evolution; international journal of organic evolution.

[32]  S. Åkesson,et al.  Conflicting patterns of mitochondrial and nuclear DNA diversity in Phylloscopus warblers , 2005, Molecular ecology.

[33]  R. Poulin,et al.  Speciation in parasites: a population genetics approach. , 2005, Trends in parasitology.

[34]  R. Poulin,et al.  Molecular ecology of parasites: elucidating ecological and microevolutionary processes , 2005, Molecular ecology.

[35]  M. Blouin,et al.  Effective sizes of macroparasite populations: a conceptual model. , 2005, Trends in parasitology.

[36]  P. Parker,et al.  Using parasites to infer host population history: a new rationale for parasite conservation , 2005 .

[37]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[38]  H. Proctor Feather mites (Acari: Astigmata): ecology, behavior, and evolution. , 2003, Annual review of entomology.

[39]  J. Rozas,et al.  Statistical properties of new neutrality tests against population growth. , 2002, Molecular biology and evolution.

[40]  M. Pagel,et al.  Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence , 2002, The American Naturalist.

[41]  K. Shaw Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Avenant‐Oldewage Parasitism: The Diversity and Ecology of Animal Parasites , 2002 .

[43]  J. Tella,et al.  Feather mites on birds: costs of parasitism or conditional outcomes? , 2001 .

[44]  J. Komdeur,et al.  No effects of a feather mite on body condition, survivorship, or grooming behavior in the Seychelles warbler, Acrocephalus sechellensis , 2001, Behavioral Ecology and Sociobiology.

[45]  R. Nichols,et al.  Gene trees and species trees are not the same. , 2001, Trends in ecology & evolution.

[46]  Jerilyn A. Walker,et al.  Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). , 2000, BioTechniques.

[47]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[48]  M. Blouin,et al.  Life cycle variation and the genetic structure of nematode populations , 1999, Heredity.

[49]  S. V. Mironov,et al.  Origin and Evolution of Feather Mites (Astigmata) , 1999, Experimental & Applied Acarology.

[50]  R. Poulin Evolutionary Ecology of Parasites , 1997 .

[51]  Robert M. Zink,et al.  The Importance of Recent Ice Ages in Speciation: A Failed Paradigm , 1997 .

[52]  K. Lafferty,et al.  Parasitology meets ecology on its own terms: Margolis et al. revisited. , 1997, The Journal of parasitology.

[53]  Y. Fu,et al.  Statistical properties of segregating sites. , 1995, Theoretical population biology.

[54]  S. Nadler Molecular approaches to studying helminth population genetics and phylogeny. , 1990, International journal for parasitology.

[55]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[56]  M. Nei Molecular Evolutionary Genetics , 1987 .

[57]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[58]  B. Charlesworth,et al.  Genetic Revolutions, Founder Effects, and Speciation , 1984 .

[59]  D. Brooks,et al.  Evolutionary biology of parasites. , 1981, Monographs in population biology.

[60]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[61]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[62]  W. T. Atyeo,et al.  Feather mites of the world (Acarina, Astigmata): the supraspecific taxa , 1996 .

[63]  W. T. Atyeo,et al.  The Feather Mite Genus Proctophyllodes( Sarcoptiformes: Proctopbyllodidae ) , 1966 .