Multiresolution and wavelets

Multiresolution is investigated on the basis of shift-invariant spaces. Given a finitely generated shift-invariant subspace S of L 2 (ℝ d ), let S k be the 2 k -dilate of S ( k ∈ℤ). A necessary and sufficient condition is given for the sequence { S k } k∈ℤ to fom a multiresolution of L 2 (ℝ d ). A general construction of orthogonal wavelets is given, but such wavelets might not have certain desirable properties. With the aid of the general theory of vector fields on spheres, it is demonstrated that the intrinsic properties of the scaling function must be used in constructing orthogonal wavelets with a certain decay rate. When the scaling function is skew-symmetric about some point, orthogonal wavelets and prewavelets are constructed in such a way that they possess certain attractive properties. Several examples are provided to illustrate the general theory.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  N. Wiener The Fourier Integral: and certain of its Applications , 1933, Nature.

[3]  Ioan Mackenzie James,et al.  The topology of Stiefel manifolds , 1976 .

[4]  Tsit Yuen Lam,et al.  Serre's Conjecture , 1978 .

[5]  Equivalence, unconditionality and convergence a.e. of the spline bases in $L_p$ spaces , 1979 .

[6]  Klaus Höllig,et al.  B-splines from parallelepipeds , 1982 .

[7]  W. Beckner,et al.  Conference on Harmonic Analysis in honor of Antoni Zygmund , 1983 .

[8]  Wolfgang Dahmen,et al.  Translates of multivarlate splines , 1983 .

[9]  R. Jia Linear independence of translates of a box spline , 1984 .

[10]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[11]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[12]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[13]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[14]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[15]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[16]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[17]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[18]  Albert Cohen Ondelettes, analyses multi résolutions et traitement numérique du signal , 1990 .

[19]  L. Schumaker,et al.  Curves and Surfaces , 1991, Lecture Notes in Computer Science.

[20]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[21]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[22]  C. Chui,et al.  Compactly supported box-spline wavelets , 1992 .

[23]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[24]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[25]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[26]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[27]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[28]  C. Chui,et al.  A general framework of compactly supported splines and wavelets , 1992 .

[29]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[30]  W. R. Madych,et al.  Wavelets and generalized box splines , 1992 .

[32]  George G. Lorentz,et al.  Approximation Theory and Functional Analysis. , 1992 .

[33]  Charles A. Micchelli Using The Refinement Equation For The Construction of Pre-Wavelets VI: Shift Invariant Subspaces , 1992 .

[34]  Ronald A. DeVore,et al.  The Structure of Nitely Generated Shift-invariant Spaces in L 2 (ir D ) , 1992 .

[35]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[36]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[37]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[38]  R. Jia A Bernstein-type inequality associated with wavelet decomposition , 1993 .

[39]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[40]  G. Strang Wavelet transforms versus Fourier transforms , 1993, math/9304214.

[41]  DaubechiesIngrid Orthonormal bases of compactly supported wavelets II , 1993 .

[42]  R. Jia,et al.  Stability and linear independence associated with wavelet decompositions , 1993 .

[43]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[44]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .

[45]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[46]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[47]  A. Cohen,et al.  Wavelets and Multiscale Signal Processing , 1995 .

[48]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[49]  Angela Kunoth,et al.  Computing Reenable Integrals | Documentation of the Program | | Version 1.1 | , 1995 .

[50]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[51]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .