Cardiac-targeted delivery of nuclear receptor RORα via ultrasound targeted microbubble destruction optimizes the benefits of regular dose of melatonin on sepsis-induced cardiomyopathy

[1]  Zhigang Wang,et al.  Drug-loaded microbubble delivery system to enhance PD-L1 blockade immunotherapy with remodeling immune microenvironment , 2023, Biomaterials Research.

[2]  Jason S. Hudson,et al.  Melatonin Supplementation in Undetermined Pediatric Deaths. , 2022, Journal of analytical toxicology.

[3]  M. Tian,et al.  Cobalamin Intake and Related Biomarkers: Examining Associations With Mortality Risk Among Adults With Type 2 Diabetes in NHANES. , 2021, Diabetes care.

[4]  Hui Li,et al.  Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. , 2021, International journal of pharmaceutics.

[5]  R. DeFronzo,et al.  Ultrasound-Targeted Microbubble Destruction Mediates Gene Transfection for Beta-Cell Regeneration and Glucose Regulation. , 2021, Small.

[6]  Xinglian Xu,et al.  Ultrasound-assisted covalent reaction of myofibrillar protein: The improvement of functional properties and its potential mechanism , 2021, Ultrasonics sonochemistry.

[7]  W. Fan,et al.  ROR: Nuclear Receptor for Melatonin or Not? , 2021, Molecules.

[8]  J. Lindner Contrast echocardiography: current status and future directions , 2020, Heart.

[9]  Xiaoyuan Zhang,et al.  Mitochondria-derived methylmalonic acid, a surrogate biomarker of mitochondrial dysfunction and oxidative stress, predicts all-cause and cardiovascular mortality in the general population , 2020, Redox biology.

[10]  Shouqiang Li,et al.  Targeted galectin-7 inhibition with ultrasound microbubble targeted gene therapy as a sole therapy to prevent acute rejection following heart transplantation in a Rodent model. , 2020, Biomaterials.

[11]  A. Borobia,et al.  Clinical trial to test the efficacy of melatonin in COVID‐19 , 2020, Journal of pineal research.

[12]  K. Maruyama,et al.  Lipid-based microbubbles and ultrasound for therapeutic application. , 2020, Advanced drug delivery reviews.

[13]  Dan Han,et al.  Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis , 2020, Circulation research.

[14]  A. Jegga,et al.  Sectm1a Deficiency Aggravates Inflammation-Triggered Cardiac Dysfunction through Disruption of LXRα Signaling in Macrophages. , 2020, Cardiovascular research.

[15]  John D. McCorvy,et al.  Virtual discovery of melatonin receptor ligands to modulate circadian rhythms , 2020, Nature.

[16]  A. Alirezaei,et al.  The effect of oral melatonin on renal ischemia-reperfusion injury in transplant patients: A double-blind, randomized controlled trial. , 2019, Transplant immunology.

[17]  F. Stuart Foster,et al.  Tumor Contrast Imaging with Gas Vesicles by Circumventing the Reticuloendothelial System. , 2019, Ultrasound in medicine & biology.

[18]  G. F. Jackson,et al.  Case report of sudden death in a twin infant given melatonin supplementation: A challenging interpretation of postmortem toxicology. , 2019, Forensic science international.

[19]  J. Cipolla-Neto,et al.  Cardioprotective Melatonin: Translating from Proof-of-Concept Studies to Therapeutic Use , 2019, International journal of molecular sciences.

[20]  R. Reiter,et al.  Melatonin stabilizes rupture‐prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα‐dependent manner , 2019, Journal of pineal research.

[21]  Yang Yan,et al.  Melatonin differentially regulates pathological and physiological cardiac hypertrophy: Crucial role of circadian nuclear receptor RORα signaling , 2019, Journal of pineal research.

[22]  Shuang Li,et al.  Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin‐conferred cardioprotection against myocardial ischemia/reperfusion injury , 2019, Journal of pineal research.

[23]  Zhi Yang,et al.  Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[24]  F. Triposkiadis,et al.  Heart failure and sepsis: practical recommendations for the optimal management , 2019, Heart Failure Reviews.

[25]  F. Gao,et al.  Ferroptosis as a target for protection against cardiomyopathy , 2019, Proceedings of the National Academy of Sciences.

[26]  B. Jensen,et al.  The nuclear receptor RORα protects against angiotensin II-induced cardiac hypertrophy and heart failure. , 2019, American journal of physiology. Heart and circulatory physiology.

[27]  R. Jockers,et al.  Melatonin in type 2 diabetes mellitus and obesity , 2018, Nature Reviews Endocrinology.

[28]  J. Minei,et al.  Beclin-1-Dependent Autophagy Protects the Heart During Sepsis , 2018, Circulation.

[29]  J. Cipolla-Neto,et al.  Melatonin as a Hormone: New Physiological and Clinical Insights. , 2018, Endocrine reviews.

[30]  R. Reiter,et al.  Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition , 2018, Journal of cellular and molecular medicine.

[31]  C. McClain,et al.  Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice[S] , 2018, Journal of Lipid Research.

[32]  Derek C. Angus,et al.  Enhancing Recovery From Sepsis: A Review , 2018, JAMA.

[33]  D. Galvan,et al.  The hallmarks of mitochondrial dysfunction in chronic kidney disease. , 2017, Kidney international.

[34]  S. E. Jensen,et al.  Effect of Intracoronary and Intravenous Melatonin on Myocardial Salvage Index in Patients with ST-Elevation Myocardial Infarction: a Randomized Placebo Controlled Trial , 2017, Journal of Cardiovascular Translational Research.

[35]  R. Reiter,et al.  Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling , 2017, Journal of pineal research.

[36]  B. He,et al.  Novel protective role of the circadian nuclear receptor retinoic acid‐related orphan receptor‐α in diabetic cardiomyopathy , 2017, Journal of pineal research.

[37]  M. Main,et al.  Safety With Echocardiographic Contrast Agents , 2017, Circulation. Cardiovascular imaging.

[38]  K. Hoang-Xuan,et al.  Clinical trial of blood-brain barrier disruption by pulsed ultrasound , 2016, Science Translational Medicine.

[39]  Ana Guerra-Librero,et al.  Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin , 2016, Journal of pineal research.

[40]  Shery Jacob,et al.  A simple practice guide for dose conversion between animals and human , 2016, Journal of basic and clinical pharmacy.

[41]  M. Rosenkilde,et al.  Pharmacokinetics of oral and intravenous melatonin in healthy volunteers , 2016, BMC Pharmacology and Toxicology.

[42]  J. Rosenberg,et al.  Pharmacokinetics of oral and intravenous melatonin in healthy volunteers , 2016, BMC Pharmacology and Toxicology.

[43]  M. Dubocovich,et al.  MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. , 2016, Annual review of pharmacology and toxicology.

[44]  Shu‐hong Li,et al.  Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia–reperfusion injury , 2016, Basic Research in Cardiology.

[45]  Shumiao Zhang,et al.  Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism , 2015, Basic Research in Cardiology.

[46]  Douglas J. Kojetin,et al.  REV-ERB and ROR nuclear receptors as drug targets , 2014, Nature Reviews Drug Discovery.

[47]  H. Rakowski,et al.  The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. , 2013, Biomaterials.

[48]  M. Oelze,et al.  Influences of microbubble diameter and ultrasonic parameters on in vitro sonothrombolysis efficacy. , 2012, Journal of vascular and interventional radiology : JVIR.

[49]  Harry Rakowski,et al.  Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. , 2011, European heart journal.

[50]  L. Rodella,et al.  Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine A induced cardiac damage , 2009, Journal of pineal research.

[51]  K. Walley,et al.  S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products , 2008, Circulation research.

[52]  S. Tam,et al.  Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration , 2006, Journal of pineal research.

[53]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[54]  D. Dawson,et al.  The effects of day‐time exogenous melatonin administration on cardiac autonomic activity , 2001, Journal of pineal research.