Débruitage et interpolation par analyse de la régularité Hölderienne. Application à la modélisation du frottement pneumatique-chaussée
暂无分享,去创建一个
[1] D. Youla,et al. Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.
[2] R. DeVore,et al. Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.
[3] J. A. Greenwood,et al. The Friction of Hard Sliders on Lubricated Rubber: The Importance of Deformation Losses , 1958 .
[4] K. Daoudi,et al. Generalized IFS for signal processing , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.
[5] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[6] G. Heinrich,et al. Rubber Friction on Self-Affine Road Tracks , 2000 .
[7] C. Oliver. Information from SAR images , 1991 .
[8] X. Guyon,et al. Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .
[9] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[10] Jacques Lévy Véhel,et al. The local Hölder function of a continuous function , 2002 .
[11] M. Sezan,et al. Image Restoration by the Method of Convex Projections: Part 2-Applications and Numerical Results , 1982, IEEE Transactions on Medical Imaging.
[12] J. Peetre. New thoughts on Besov spaces , 1976 .
[13] Benoit B. Mandelbrot,et al. Fractals and Scaling in Finance , 1997 .
[14] John M. Danskin,et al. Approximation of functions of several variables and imbedding theorems , 1975 .
[15] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[16] Yves Meyer,et al. Wavelets, Vibrations and Scalings , 1997 .
[17] R. R. Hegmon. The Contribution of Deformation Losses to Rubber Friction , 1969 .
[18] J. L. Véhel,et al. Generalized Multifractional Brownian Motion: Definition and Preliminary Results , 1999 .
[19] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[20] K Himeno,et al. SKID RESISTANCE OF ASPHALT PAVEMENT SURFACES RELATED TO THEIR MICROTEXTURE , 2000 .
[21] Jacques Lévy Véhel,et al. Introduction to the Multifractal Analysis of Images , 1998 .
[22] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[23] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[24] J. Véhel,et al. Interpolation de signaux par conservation de la régularité Hölderienne , 2003 .
[25] T. Kanade,et al. SUPER-RESOLUTION: RECONSTRUCTION OR RECOGNITION? , 2001 .
[26] Jacques Lévy Véhel,et al. A Regularization Approach to Fractional Dimension Estimation , 1998 .
[27] M. Lapidus,et al. Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .
[28] Minh-Tan Do,et al. Frottement pneumatique / chaussée influence de la microtexture des surfaces de chaussée , 2001 .
[29] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[30] I. Johnstone,et al. Density estimation by wavelet thresholding , 1996 .
[31] J. L. Véhel,et al. The Generalized Multifractional Brownian Motion , 2000 .
[32] Anestis Antoniadis,et al. Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study , 2001 .
[33] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[34] W. O. Yandell,et al. MICROTEXTURE ROUGHNESS EFFECT ON PREDICTED ROAD-TYRE FRICTION IN WET CONDITIONS , 1981 .
[35] Gert Heinrich,et al. Hysteresis Friction of Sliding Rubbers on Rough and Fractal Surfaces , 1997 .
[36] Pierrick Legrand,et al. Signal and Image processing with FracLab , 2004 .
[37] J. L. Véhel,et al. On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion , 2004 .
[38] S. Jaffard. Wavelet Techniques in Multifractal Analysis , 2004 .
[39] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[40] Pierrick Legrand,et al. Fractal properties and characterization of road profiles , 2004 .
[41] Jacques Lévy Véhel,et al. Evolutionary Signal Enhancement Based on Hölder Regularity Analysis , 2001, EvoWorkshops.
[42] Jacques Istas,et al. Identifying the multifractional function of a Gaussian process , 1998 .
[43] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[44] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[45] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[46] Felix Abramovich,et al. Bayesian Approach to Wavelet Decomposition and Shrinkage , 1999 .
[47] W O Yandell,et al. PREDICTION OF TIRE-ROAD FRICTION FROM TEXTURE MEASUREMENTS , 1994 .
[48] Pierrick Legrand,et al. Local regularity-based image denoising , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[49] Brani Vidakovic,et al. BAMS Method: Theory and Simulations , 2001 .
[50] José Carlos Príncipe,et al. Super-resolution of images based on local correlations , 1999, IEEE Trans. Neural Networks.
[51] J. L. Véhel,et al. Fractional Brownian motion and data traffic modeling: The other end of the spectrum , 1997 .
[52] Ir. A. Dijks. A Multifactor Examination of Wet Skid Resistance of Car Tires , 1974 .
[53] Antoine Ayache,et al. The Generalized Multifractional Field: A Nice Tool for the Study of the Generalized Multifractional Brownian Motion , 2002 .
[54] C. Tricot. Curves and Fractal Dimension , 1994 .
[55] Barbara E. Sabey,et al. Factors Affecting the Friction of Tires on Wet Roads , 1970 .
[56] William T. Freeman,et al. Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.
[57] Jacques Lévy Véhel,et al. 2-Microlocal Analysis and Application in Signal Processing , 1998 .
[58] Y. Meyer,et al. Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .
[59] A. Papoulis. A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .
[60] G Delalande. RESISTANCE DES GRANULATS AU POLISSAGE . METHODE D'ESSAI PAR PROJECTION , 1992 .