Débruitage et interpolation par analyse de la régularité Hölderienne. Application à la modélisation du frottement pneumatique-chaussée

L'utilisation d'ondelettes et d'outils d'analyse fractale est appropriee a l'analyse des signaux irreguliers. On pense que la caracterisation de la regularite locale est importante dans la description de ces signaux. Pour etudier la regularite, on utilise l'exposant de Holder autour duquel plusieurs outils sont developpes. Premierement, on decrit et on compare des techniques permettant d'estimer cet exposant. Puis nous presentons une methode d'interpolation de points basee sur la conservation de la regularite Holderienne. Pour conclure la partie sur l'analyse Holderienne, de nouvelles methodes de debruitage avec controle de la regularite sont exposees. Ces methodes, a base d'ondelettes, presentent des taux de convergence asymptotique similaires aux methodes les plus performantes. Les divers outils developpes peuvent etre appliques aux signaux 1D ainsi qu'aux images. Plus particulierement, dans la deuxieme partie de la these, on s'interesse a des profils routiers afin de mieux modeliser le frottement pneumatique-chaussee. Ce travail entre dans le cadre de l'O.R. Adherence du LCPC, qui a pour but de quantifier le role des asperites de dimensions micrometrique a centimetrique, formant la texture des surfaces de chaussee, dans la generation du frottement. Dans cette partie, nous presentons les travaux menes aux LCPC sur la technique d'indenteur et sa combinaison au modele de frottement de Stefani. Ensuite on demontre la fractalite des profils routiers puis l'apport des techniques d'interpolation Holderienne et de debruitage multifractal sur le calcul du frottement. Enfin un modele multi-echelle de frottement, provenant d'un raffinement du modele de Stefani, est explicite.

[1]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[2]  R. DeVore,et al.  Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.

[3]  J. A. Greenwood,et al.  The Friction of Hard Sliders on Lubricated Rubber: The Importance of Deformation Losses , 1958 .

[4]  K. Daoudi,et al.  Generalized IFS for signal processing , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  G. Heinrich,et al.  Rubber Friction on Self-Affine Road Tracks , 2000 .

[7]  C. Oliver Information from SAR images , 1991 .

[8]  X. Guyon,et al.  Convergence en loi des H-variations d'un processus gaussien stationnaire sur R , 1989 .

[9]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[10]  Jacques Lévy Véhel,et al.  The local Hölder function of a continuous function , 2002 .

[11]  M. Sezan,et al.  Image Restoration by the Method of Convex Projections: Part 2-Applications and Numerical Results , 1982, IEEE Transactions on Medical Imaging.

[12]  J. Peetre New thoughts on Besov spaces , 1976 .

[13]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[14]  John M. Danskin,et al.  Approximation of functions of several variables and imbedding theorems , 1975 .

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  Yves Meyer,et al.  Wavelets, Vibrations and Scalings , 1997 .

[17]  R. R. Hegmon The Contribution of Deformation Losses to Rubber Friction , 1969 .

[18]  J. L. Véhel,et al.  Generalized Multifractional Brownian Motion: Definition and Preliminary Results , 1999 .

[19]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[20]  K Himeno,et al.  SKID RESISTANCE OF ASPHALT PAVEMENT SURFACES RELATED TO THEIR MICROTEXTURE , 2000 .

[21]  Jacques Lévy Véhel,et al.  Introduction to the Multifractal Analysis of Images , 1998 .

[22]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[23]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[24]  J. Véhel,et al.  Interpolation de signaux par conservation de la régularité Hölderienne , 2003 .

[25]  T. Kanade,et al.  SUPER-RESOLUTION: RECONSTRUCTION OR RECOGNITION? , 2001 .

[26]  Jacques Lévy Véhel,et al.  A Regularization Approach to Fractional Dimension Estimation , 1998 .

[27]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[28]  Minh-Tan Do,et al.  Frottement pneumatique / chaussée influence de la microtexture des surfaces de chaussée , 2001 .

[29]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[30]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[31]  J. L. Véhel,et al.  The Generalized Multifractional Brownian Motion , 2000 .

[32]  Anestis Antoniadis,et al.  Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study , 2001 .

[33]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[34]  W. O. Yandell,et al.  MICROTEXTURE ROUGHNESS EFFECT ON PREDICTED ROAD-TYRE FRICTION IN WET CONDITIONS , 1981 .

[35]  Gert Heinrich,et al.  Hysteresis Friction of Sliding Rubbers on Rough and Fractal Surfaces , 1997 .

[36]  Pierrick Legrand,et al.  Signal and Image processing with FracLab , 2004 .

[37]  J. L. Véhel,et al.  On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion , 2004 .

[38]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[39]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[40]  Pierrick Legrand,et al.  Fractal properties and characterization of road profiles , 2004 .

[41]  Jacques Lévy Véhel,et al.  Evolutionary Signal Enhancement Based on Hölder Regularity Analysis , 2001, EvoWorkshops.

[42]  Jacques Istas,et al.  Identifying the multifractional function of a Gaussian process , 1998 .

[43]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[44]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[45]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[46]  Felix Abramovich,et al.  Bayesian Approach to Wavelet Decomposition and Shrinkage , 1999 .

[47]  W O Yandell,et al.  PREDICTION OF TIRE-ROAD FRICTION FROM TEXTURE MEASUREMENTS , 1994 .

[48]  Pierrick Legrand,et al.  Local regularity-based image denoising , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[49]  Brani Vidakovic,et al.  BAMS Method: Theory and Simulations , 2001 .

[50]  José Carlos Príncipe,et al.  Super-resolution of images based on local correlations , 1999, IEEE Trans. Neural Networks.

[51]  J. L. Véhel,et al.  Fractional Brownian motion and data traffic modeling: The other end of the spectrum , 1997 .

[52]  Ir. A. Dijks A Multifactor Examination of Wet Skid Resistance of Car Tires , 1974 .

[53]  Antoine Ayache,et al.  The Generalized Multifractional Field: A Nice Tool for the Study of the Generalized Multifractional Brownian Motion , 2002 .

[54]  C. Tricot Curves and Fractal Dimension , 1994 .

[55]  Barbara E. Sabey,et al.  Factors Affecting the Friction of Tires on Wet Roads , 1970 .

[56]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[57]  Jacques Lévy Véhel,et al.  2-Microlocal Analysis and Application in Signal Processing , 1998 .

[58]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[59]  A. Papoulis A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .

[60]  G Delalande RESISTANCE DES GRANULATS AU POLISSAGE . METHODE D'ESSAI PAR PROJECTION , 1992 .