Transmitting more than 10 bit with a single photon.

Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a spatial light modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting detector (ICCD). We experimentally demonstrate selective addressing any location (symbol) in a 9072 size grid (alphabet) to achieve 10.5 bit of mutual information per detected photon between the sender and receiver. Our results can be useful for very-high-dimensional quantum information processing.

[1]  James Schneeloch,et al.  Quantum mutual information capacity for high-dimensional entangled states. , 2011, Physical review letters.

[2]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[3]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[4]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[5]  A. V. Sergienko,et al.  Demonstration of the complementarity of one- and two-photon interference , 2001, quant-ph/0112065.

[6]  Jan Perina,et al.  Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion , 2005 .

[7]  K. Boller,et al.  Programmable two-photon quantum interference in $10^3$ channels in opaque scattering media , 2015, 1511.00897.

[8]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[9]  Robert Fickler,et al.  Real-Time Imaging of Quantum Entanglement , 2012, Scientific Reports.

[10]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[11]  M. Teich,et al.  Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera. , 1998, Optics express.

[12]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[13]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[14]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[15]  Joseph M. Kahn,et al.  Capacity limits of spatially multiplexed free-space communication , 2015 .

[16]  Seth Lloyd,et al.  Quantum enigma machine: Experimentally demonstrating quantum data locking. , 2016, Physical review. A.

[17]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.

[18]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[19]  C. Monken,et al.  Direct measurement of transverse-mode entanglement in two-photon states , 2009 .

[20]  Alex M. Andrew,et al.  INFORMATION THEORY, INFERENCE, AND LEARNING ALGORITHMS, by David J. C. MacKay, Cambridge University Press, Cambridge, 2003, hardback, xii + 628 pp., ISBN 0-521-64298-1 (£30.00) , 2004, Robotica.

[21]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[22]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[23]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[24]  P Di Trapani,et al.  Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. , 2004, Physical review letters.

[25]  Tomáš Čižmár,et al.  Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. , 2011, Optics express.

[26]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[27]  Robert W. Boyd,et al.  EPR-based ghost imaging using a single-photon-sensitive camera , 2012, 1212.5059.

[28]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[29]  Lyubov V Amitonova,et al.  Rotational memory effect of a multimode fiber. , 2015, Optics express.

[30]  S. Walborn,et al.  Schemes for quantum key distribution with higher-order alphabets using single-photon fractional Fourier optics , 2008 .

[31]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[32]  Konrad Banaszek,et al.  High-fidelity spatially resolved multiphoton counting for quantum imaging applications. , 2014, Optics letters.