Equations for calculation of the terminal velocity and drag coefficient of solid spheres and gas bubbles

Abstract An analysis of the correlations proposed in the literature for calculation of the drag coefficient (CD ) and the terminal velocity of a falling rigid sphere has been made. Among the correlations describing CD vs. Re, that of Turton and Levenspiel fits the experimental data almost perfectly. However, it is not explicit in the terminal velocity. The available explicit correlations do not fit the experimental data well. The present paper shows that a simple and precise explicit correlation can be developed if CD is related to the Archimedes instead of the Reynolds number. The precision of the correlation proposed is similar to that of the Turton and Levenspiel (1986), while it is explicit in the terminal velocity. On the basis of this correlation, a model is proposed to calculate the drag coefficients and the terminal velocities of free falling or rising spherical particles in an infinite fluid as well as gas bubbles with any volume and shape rising in a contaminated liquid.

[1]  N. Sylvester,et al.  An explicit equation for particle settling velocities in solid‐liquid systems , 1981 .

[2]  M. Hartman,et al.  Predicting the free-fall velocities of spheres , 1989 .

[3]  William W. Willmarth,et al.  Some experimental results on sphere and disk drag , 1971 .

[4]  H. Pruppacher,et al.  An Experimental Determination of the Drag on a Sphere at Low Reynolds Numbers , 1968 .

[5]  S. Dennis,et al.  Calculation of the steady flow past a sphere at low and moderate Reynolds numbers , 1971, Journal of Fluid Mechanics.

[6]  Richard Turton,et al.  An explicit relationship to predict spherical particle terminal velocity , 1987 .

[7]  A. K. Agrawal,et al.  Shape of liquid drops moving in liquid media , 1966 .

[8]  O. Levenspiel,et al.  Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .

[9]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[10]  A. Goldburg,et al.  Transition and Strouhal Number for the Incompressible Wake of Various Bodies , 1966 .

[11]  R.L.C. Flemmer,et al.  On the drag coefficient of a sphere , 1986 .

[12]  D. G. Karamanev,et al.  Rise of gas bubbles in quiescent liquids , 1994 .

[13]  J. F. Richardson,et al.  THE RESISTANCE TO MOTION OF A SOLID SPHERE IN A FLUID , 1987 .

[14]  L. Nikolov,et al.  Free rising spheres do not obey newton's law for free settling , 1992 .

[15]  G. A. S. M. D.Sc. LXXV. Experiments on the resistance of the air to falling spheres , 1914 .

[16]  Accurate measurements of sphere drag at low Reynolds numbers , 1965 .

[17]  E. Achenbach,et al.  Experiments on the flow past spheres at very high Reynolds numbers , 1972, Journal of Fluid Mechanics.

[18]  O. Levenspiel,et al.  A short note on the drag correlation for spheres , 1986 .

[19]  S. Cheng,et al.  Numerical Solution of a Uniform Flow over a Sphere at Intermediate Reynolds Numbers , 1969 .

[20]  K. L. Goin,et al.  Subsonic Drag of Spheres at Reynolds Numbers from 200 to 10,000 , 1968 .

[21]  T. Bromwich,et al.  Motion of a Sphere in a Viscous Fluid , 1929, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  C. Davies,et al.  Definitive equations for the fluid resistance of spheres , 1945 .

[23]  R. G. Lunnon Fluid Resistance to Moving Spheres , 1926 .

[24]  A. B. Bailey,et al.  Sphere Drag Coefficients for a Broad Range of Mach and Reynolds Numbers , 1972 .

[25]  E. Covert,et al.  Sting-free measurements of sphere drag in laminar flow , 1972, Journal of Fluid Mechanics.

[26]  H. Liebster Über den Widerstand von Kugeln , 1927 .

[27]  H. D. Arnold LXXIV. Limitations imposed by slip and inertia terms upon Stoke's law for the motion of spheres through liquids , 1911 .