On agent-friendly aggregation in networks (Short Paper)

Maximum Lifetime Data Aggregation in sensor networks is a hard optimization problem. Aggregation schemes often use a tree structure, however, nding an optimal aggregation graph is dicult in the worst case. Furthermore, mobile

[1]  Danny B. Lange,et al.  Seven good reasons for mobile agents , 1999, CACM.

[2]  Konstantinos Kalpakis,et al.  Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks , 2003, Comput. Networks.

[3]  Ness B. Shroff,et al.  On the Construction of a Maximum-Lifetime Data Gathering Tree in Sensor Networks: NP-Completeness and Approximation Algorithm , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[4]  Béla Bollobás,et al.  Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).

[5]  Leen Stougie,et al.  Data Aggregation in Sensor Networks: Balancing Communication and Delay Costs , 2007, SIROCCO.

[6]  Guy Louchard,et al.  A Distributed Algorithm to Find Hamiltonian Cycles in Random Graphs , 2004, CAAN.

[7]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[8]  Andrei Z. Broder,et al.  Optimal plans for aggregation , 2002, PODC '02.

[9]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[10]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[11]  B. Bollobás The evolution of random graphs , 1984 .

[12]  Weiwei Sun,et al.  Tree Structure Based Data Gathering for Maximum Lifetime in Wireless Sensor Networks , 2005, APWeb.

[13]  S. Sitharama Iyengar,et al.  On computing mobile agent routes for data fusion in distributed sensor networks , 2004, IEEE Transactions on Knowledge and Data Engineering.

[14]  H. B. Mitchell,et al.  Multi-Sensor Data Fusion: An Introduction , 2007 .

[15]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[16]  Jordi Petit i Silvestre Hamiltonian cycles in faulty random geometric networks , 2001 .

[17]  Min Chen,et al.  Data dissemination based on mobile agent in wireless sensor networks , 2005, The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)l.

[18]  Josep Díaz,et al.  Sharp threshold for hamiltonicity of random geometric graphs , 2006, SIAM J. Discret. Math..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  S. Sitharama Iyengar,et al.  Multiresolution data integration using mobile agents in distributed sensor networks , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[21]  Stefan Schmid,et al.  Algorithmic models for sensor networks , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[22]  Martin Fürer,et al.  Approximating the Minimum-Degree Steiner Tree to within One of Optimal , 1994, J. Algorithms.