Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation

SUMMARY Artefacts and local instabilities are common in numerical solutions of seismic wave equations. Although many of these are already known, most are not well documented in an accessible form. One form of artefacts is a consequence of partial derivative operators that are non-local and are associated with the interaction between the propagating wavefield and the medium at discontinuities in material properties. When pseudo-spectral solutions are used, heterogeneous wave equations may be accurately solved in a wide dynamic range using even-based Fourier transforms on a staggered grid. Regardless of the implementation of a spatial differentiator, use of homogeneous wave equations or of standard (non-staggered) grids gives less accurate results. Synthetic examples include heterogeneous acoustic, elastic and poroelastic (Biot) equations.

[1]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[2]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[3]  A. R. Mitchell Computational methods in partial differential equations , 1969 .

[4]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[5]  J. Gazdag Numerical convective schemes based on accurate computation of space derivatives , 1973 .

[6]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[7]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[8]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[9]  R. Stoll Acoustic Waves in Ocean Sediments , 1977 .

[10]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[11]  N. Dutta,et al.  Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model); Part I, Biot theory , 1979 .

[12]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[13]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[14]  R. E. Sheriff,et al.  Exploration Seismology, Volume 1: History, Theory and Data Acquisition , 1982 .

[15]  Ralph A. Stephen,et al.  A comparison of finite difference and reflectivity seismograms for marine models , 1983 .

[16]  N. Dutta,et al.  Seismic reflections from a gas‐water contact , 1983 .

[17]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[18]  Finite difference seismograms for laterally varying marine models , 1984 .

[19]  Moshe Reshef,et al.  Elastic wave calculations by the Fourier method , 1984 .

[20]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[21]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[22]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[23]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[24]  Olav Holberg,et al.  COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .

[25]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[26]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[27]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[28]  Contributions to the pseudospectral method for computing synthetic seismograms , 1987 .

[29]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[30]  Ralph A. Stephen,et al.  A review of finite difference methods for seismo-acoustics problems at the seafloor , 1988 .

[31]  Moshe Reshef,et al.  Three-dimensional elastic modeling by the Fourier method , 1988 .

[32]  Ronnie Kosloff,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1988 .

[33]  Alfred Behle,et al.  NUMERICAL SOLUTION OF THE ACOUSTIC AND ELASTIC WAVE EQUATIONS BY A NEW RAPID EXPANSION METHOD1 , 1989 .

[34]  Dean Clifford Witte The Pseudospectral Method for Simulating Wave Propagation. , 1989 .

[35]  Large Scale Elastic Wavefield Inversion , 1989 .

[36]  L. W. Braile,et al.  Reply to J. Vidale's “Comment on ‘A comparison of finite-difference and fourier method calculations of synthetic seismograms’” , 1989, Bulletin of the Seismological Society of America.

[37]  Manuel Kindelan,et al.  On the construction and efficiency of staggered numerical differentiators for the wave equation , 1990 .

[38]  J. Carcione Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields , 1990 .

[39]  B. Fornberg High-order finite differences and the pseudospectral method on staggered grids , 1990 .

[40]  José M. Carcione,et al.  An accurate and efficient scheme for wave propagation in linear viscoelastic media , 1990 .

[41]  G. McMechan,et al.  Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory , 1991 .

[42]  Elastic Modeling By Finite-Difference And the Rapid Expansion Method (REM) , 1991 .

[43]  D. Givoli Non-reflecting boundary conditions , 1991 .

[44]  George A. McMechan,et al.  3-D finite difference modeling of elastic waves in borehole environments , 1992 .

[45]  F. Muir,et al.  Modeling elastic fields across irregular boundaries , 1992 .

[46]  Guido Kneib,et al.  Accurate and efficient seismic modeling in random media , 1993 .

[47]  George A. McMechan,et al.  2-D pseudo-spectral viscoacoustic modeling in a distributed-memory multi-processor computer , 1993, Bulletin of the Seismological Society of America.

[48]  P. Mora,et al.  An Efficient Implementation of the Free Surface Boundary Condition In 2-D And 3-D Elastic Cases , 1993 .

[49]  Carlos A. Cunha Elastic modeling in discontinuous media , 1993 .

[50]  G. McMechan,et al.  Separation of intrinsic and scattering Q based on frequency-dependent amplitude ratios of transmitted waves , 1994 .

[51]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[52]  George A. McMechan,et al.  Simulation of long‐period 3‐D elastic responses for whole earth models , 1995 .

[53]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .