3D visual data mining - goals and experiences

The visual exploration of large databases raises a number of unresolved inference problems and calls for new interaction patterns between multiple disciplines--both at the conceptual and technical level. We present an approach that is based on the interaction of four disciplines: database systems, statistical analyses, perceptual and cognitive psychology, and scientific visualization. At the conceptual level we offer perceptual and cognitive insights to guide the information visualization process. We then choose cluster surfaces to exemplify the data mining process, to discuss the tasks involved, and to work out the interaction patterns.

[1]  Ramesh C. Jain,et al.  Similarity indexing with the SS-tree , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[2]  B. Scholl Objects and attention: the state of the art , 2001, Cognition.

[3]  Padhraic Smyth,et al.  Statistical inference and data mining , 1996, CACM.

[4]  Eric Backer,et al.  A Modulated Parzen-Windows Approach for Probability Density Estimation , 1997, IDA.

[5]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[6]  E. Rolls High-level vision: Object recognition and visual cognition, Shimon Ullman. MIT Press, Bradford (1996), ISBN 0 262 21013 4 , 1997 .

[7]  Michael H. Böhlen,et al.  Density Surfaces for Immersive Explorative Data Analyses , 2001 .

[8]  Erik Granum,et al.  Methods for visual mining of data in Virtual Reality , 2001 .

[9]  Deok-Hwan Kim,et al.  Multi-dimensional selectivity estimation using compressed histogram information , 1999, SIGMOD '99.

[10]  Brian J. Scholl Objects and attention , 2002 .

[11]  Bernhard Seeger,et al.  A comparison of selectivity estimators for range queries on metric attributes , 1999, SIGMOD '99.

[12]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[13]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .

[14]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[15]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[16]  Charles C. Taylor,et al.  Bootstrap choice of the smoothing parameter in kernel density estimation , 1989 .

[17]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[18]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[19]  Surajit Chaudhuri,et al.  Self-tuning histograms: building histograms without looking at data , 1999, SIGMOD '99.

[20]  Vladimir Katkovnik,et al.  Nonparametric density estimation with adaptive varying window size , 2001, SPIE Remote Sensing.

[21]  Andreas Henrich,et al.  The LSD/sup h/-tree: an access structure for feature vectors , 1998, Proceedings 14th International Conference on Data Engineering.

[22]  S. Levinson,et al.  LANGUAGE AND SPACE , 1996 .

[23]  Robert L. Grossman,et al.  The Tele-Immersive Data Explorer: A Distributed Architecture for Collaborative Interactive Visualization of Large Data-sets , 2000 .

[24]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[25]  Hans-Peter Kriegel,et al.  VisDB: a system for visualizing large databases , 1995, SIGMOD '95.

[26]  R. Jackendoff The architecture of the linguistic-spatial interface , 1996 .

[27]  J. Simonoff Multivariate Density Estimation , 1996 .

[28]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[29]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[30]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[31]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[32]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[33]  Alberto O. Mendelzon,et al.  Hy+: a Hygraph-based query and visualization system , 1993, SIGMOD '93.

[34]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[35]  Han-Wei Shen,et al.  Sweeping simplices: a fast iso-surface extraction algorithm for unstructured grids , 1995, Proceedings Visualization '95.

[36]  Heidrun Schumann,et al.  Visual Data Mining , 2002, Eurographics.

[37]  James Stephen Marron,et al.  An assessment of finite sample performance of adaptive methods in density estimation , 1999 .