Review and analysis of three components of the differential evolution mutation operator in MOEA/D-DE

A decomposition-based multi-objective evolutionary algorithm with a differential evolution variation operator (MOEA/D-DE) shows high performance on challenging multi-objective problems (MOPs). The DE mutation consists of three key components: a mutation strategy, an index selection method for parent individuals, and a bound-handling method. However, the configuration of the DE mutation operator that should be used for MOEA/D-DE has not been thoroughly investigated in the literature. This configuration choice confuses researchers and users of MOEA/D-DE. To address this issue, we present a review of the existing configurations of the DE mutation operator in MOEA/D-DE and systematically examine the influence of each component on the performance of MOEA/D-DE. Our review reveals that the configuration of the DE mutation operator differs depending on the source code of MOEA/D-DE. In our analysis, a total of 30 configurations (three index selection methods, two mutation strategies, and five bound-handling methods) are investigated on 16 MOPs with up to five objectives. Results show that each component significantly affects the performance of MOEA/D-DE. We also present the most suitable configuration of the DE mutation operator, which maximizes the effectiveness of MOEA/D-DE.

[1]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[2]  Yong Wang,et al.  A Weighted Biobjective Transformation Technique for Locating Multiple Optimal Solutions of Nonlinear Equation Systems , 2017, IEEE Transactions on Evolutionary Computation.

[3]  Hisao Ishibuchi,et al.  Pareto Fronts of Many-Objective Degenerate Test Problems , 2016, IEEE Transactions on Evolutionary Computation.

[4]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[5]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[6]  Thomas Stützle,et al.  To DE or Not to DE? Multi-objective Differential Evolution Revisited from a Component-Wise Perspective , 2015, EMO.

[7]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[10]  Hua Xu,et al.  An Experimental Investigation of Variation Operators in Reference-Point Based Many-Objective Optimization , 2015, GECCO.

[11]  Dimo Brockhoff,et al.  Benchmarking Numerical Multiobjective Optimizers Revisited , 2015, GECCO.

[12]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[13]  Dipti Srinivasan,et al.  A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition , 2017, IEEE Transactions on Evolutionary Computation.

[14]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[15]  Jürgen Branke,et al.  Experimental Analysis of Bound Handling Techniques in Particle Swarm Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[16]  Qingfu Zhang,et al.  Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition , 2014, IEEE Transactions on Evolutionary Computation.

[17]  Simon Wessing Repair Methods for Box Constraints Revisited , 2013, EvoApplications.

[18]  Anne Auger,et al.  The Impact of Variation Operators on the Performance of SMS-EMOA on the Bi-objective BBOB-2016 Test Suite , 2016, GECCO.

[19]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[20]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[21]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[22]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[23]  Qingfu Zhang,et al.  Adaptive Replacement Strategies for MOEA/D , 2016, IEEE Transactions on Cybernetics.

[24]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[25]  Shengxiang Yang,et al.  An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts , 2016, IEEE Transactions on Cybernetics.

[26]  Gabrielle De Lannoy,et al.  Multivariate calibration of a water and energy balance model in the spectral domain , 2011 .

[27]  Jaroslaw Arabas,et al.  Experimental Comparison of Methods to Handle Boundary Constraints in Differential Evolution , 2010, PPSN.

[28]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  Yong Wang,et al.  On the selection of solutions for mutation in differential evolution , 2016, Frontiers of Computer Science.

[30]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[31]  Tea Tusar,et al.  Differential Evolution versus Genetic Algorithms in Multiobjective Optimization , 2007, EMO.

[32]  Carlos A. Coello Coello,et al.  An Overview of Weighted and Unconstrained Scalarizing Functions , 2017, EMO.

[33]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[34]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[35]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[36]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[37]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[38]  Miqing Li,et al.  Benchmark Functions for the CEC'2017 Competition on Many-Objective Optimization , 2017 .

[39]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[40]  Patrick M. Reed,et al.  Many‐objective groundwater monitoring network design using bias‐aware ensemble Kalman filtering, evolutionary optimization, and visual analytics , 2011 .

[41]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[42]  Bernhard Sendhoff,et al.  Evolution by Adapting Surrogates , 2013, Evolutionary Computation.

[43]  Hisao Ishibuchi,et al.  Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes , 2017, IEEE Transactions on Evolutionary Computation.

[44]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[45]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[46]  Qing Li,et al.  Multiobjective optimization for crash safety design of vehicles using stepwise regression model , 2008 .

[47]  Hisao Ishibuchi,et al.  Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems , 2015, IEEE Transactions on Evolutionary Computation.

[48]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[49]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.