Dynamic solution to the ground-holding problem in air traffic control

Existing probabilistic solutions to the ground-holding problem in air traffic control are of a static nature, with ground-holds assigned to aircraft at the beginning of daily operations. In this paper we present an optimal dynamic solution that simplifies the structure of the control mechanism by exercising ground-holding on groups of aircraft instead of individual flights. Using stochastic linear programming with recourse, we have been able to solve problem instances for one of the largest airports in the U.S. with just a powerful PC. We illustrate the advantage of the probabilistic dynamic solution over: (a) the static solution; (b) a deterministic solution; and (c) the passive strategy of no ground-holding.