Tailoring the mechanical properties of polyacrylamide-based hydrogels

Abstract Here, we studied the mechanical properties of polyacrylic acid-co-polyacrylamide (pAAc/pAAm) and polyacrylate-co-polyacrylamide (pNaAc/pAAm)-based hydrogels as a function of composition and total polymer content. While both polyacrylate and polyacrylic acid are weakly-charged polyelectrolytes with carboxylate side groups, they exhibit different behavior as copolymers with polyacrylamide. In swelling studies the highest degree of volumetric expansion occurs in the polyacrylate-rich hydrogels. Rheological measurements indicate that the shear storage modulus of the hydrogels typically increases with the percentage of polyacrylamide for a given polymer volume fraction; however, the simultaneous strengthening and embrittling effects of polyacrylamide as a copolymer are more dramatic for the pNaAc/pAAm hydrogels.

[1]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[2]  Dennis Discher,et al.  Substrate compliance versus ligand density in cell on gel responses. , 2004, Biophysical journal.

[3]  K. Healy,et al.  Thermo-responsive peptide-modified hydrogels for tissue regeneration. , 2001, Biomacromolecules.

[4]  M. Radmacher,et al.  Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope , 1998 .

[5]  Donald Voet,et al.  Fundamentals of Biochemistry , 1999 .

[6]  Daniel A. Hammer,et al.  Endothelial Cell Traction Forces on RGD-Derivatized Polyacrylamide Substrata † , 2003 .

[7]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[8]  Y. Wang,et al.  Cell locomotion and focal adhesions are regulated by substrate flexibility. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Delsanti,et al.  Structural, elastic, and dynamic properties of swollen polymer networks , 1982 .

[10]  P. Basser,et al.  Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. , 2000, Biomacromolecules.

[11]  D. Pine,et al.  Rheology of Block Copolypeptide Solutions: Hydrogels with Tunable Properties , 2004 .

[12]  K. Tam,et al.  Rheological properties of methacrylic acid/ethyl acrylate co-polymer: comparison between an unmodified and hydrophobically modified system , 2001 .

[13]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[14]  T. Meyvis,et al.  Rheological monitoring of long-term degrading polymer hydrogels , 1999 .

[15]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[16]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[17]  H. Gregor,et al.  Potentiometric titration of polyacrylic and polymethacrylic acids with alkali metal and quaternary ammonium bases , 1957 .

[18]  J. Desbrières,et al.  Kinetic aspects, rheological properties and mechanoelectrical effects of hydrogels composed of polyacrylamide and polystyrene nanoparticles. , 2007, Soft matter.

[19]  J. Wong,et al.  Rheological Monitoring of Polyacrylamide Gelation: Importance of Cross-Link Density and Temperature , 2004 .

[20]  S. Grzesiek,et al.  Charged acrylamide copolymer gels as media for weak alignment , 2002, Journal of biomolecular NMR.

[21]  Toyoichi Tanaka,et al.  Super-absorbency and phase transition of gels in physiological salt solutions , 1992, Nature.

[22]  J. E. Puig,et al.  Theophylline release from poly(acrylic acid-co-acrylamide) hydrogels , 1999 .

[23]  S. Woerly,et al.  Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). , 2001, Biomaterials.

[24]  F. Horkay,et al.  The effects of cross‐linking on the equation of state of a polymer solution , 1989 .

[25]  P. Moghe,et al.  Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. , 2005, Biotechnology and bioengineering.

[26]  O. Okay,et al.  Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments , 2000 .

[27]  Joe Tien,et al.  Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. , 2003, Journal of biomedical materials research. Part A.

[28]  Y. Lo,et al.  Viscoelastic Effects on the Diffusion Properties of Curdlan Gels , 2003 .

[29]  E. Karadağ Swelling of Superabsorbent Acrylamide/Sodium Acrylate Hydrogels Prepared Using Multifunctional Crosslinkers , 2002 .

[30]  Matthew Pilarz,et al.  Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells , 2007, Proceedings of the National Academy of Sciences.

[31]  Hao Jiang,et al.  Rheology of highly swollen chitosan/polyacrylate hydrogels , 1999 .

[32]  V. Cermak,et al.  Oxygen inhibition and the influence of pH on the inverse emulsion polymerization of the acrylic monomers , 2001 .

[33]  Y. Wang,et al.  Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. , 1998, Methods in enzymology.

[34]  F. Ilmain,et al.  Structure and properties of partially neutralized poly(acrylic acid) gels , 1991 .

[35]  Anthony English,et al.  The effect of hydrogel charge density on cell attachment. , 2004, Biomaterials.