Quantum information processing with superconducting qubits

Quantum Information Processing with Superconducting Qubits Jerry Moy Chow 2010 This thesis describes the theoretical framework, implementation, and measurements of a quantum processor comprised of superconducting qubits coupled in the circuit quantum electrodynamics (QED) architecture. In the realization of circuit QED, two superconducting ‘transmon’ charge qubits are capacitively coupled to a one-dimensional microwave transmission line resonator which serves as a quantum bus. Single-qubit rotations can be applied through the resonator and their operation is characterized using various benchmarking techniques. Through a virtual photon interaction via the quantum bus, the two qubits can coherently swap a single excitation. A separate two-qubit conditional phase interaction is also observed which is attributable to an interaction in the two-excitation manifold of the transmons. Furthermore, the same quantum bus which couples the qubits can be used as a joint detector of the full two-qubit quantum state. Entanglement witnesses and a violation of a Bell-type inequality are found using this joint detector on highly entangled states. Finally, combining the single-qubit rotations, conditional phase interaction, and joint readout, allows the realization and characterization of simple quantum algorithms, specifically the Deutsch-Jozsa and Grover’s search algorithms.

[1]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[2]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[3]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[4]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[5]  R. J. Schoelkopf,et al.  Qubits as Spectrometers of Quantum Noise , 2003 .

[6]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[7]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[8]  David Schuster,et al.  Circuit quantum electrodynamics , 2007 .

[9]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[10]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[11]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[12]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[13]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[14]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[15]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[16]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[17]  Peggy Aldrich Kidwell Colossus: The Secrets of Bletchley Park's Codebreaking Computers (review) , 2007 .

[18]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[19]  S Osnaghi,et al.  Coherent control of an atomic collision in a cavity. , 2001, Physical review letters.

[20]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[21]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[22]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[23]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[24]  G. Rigolin Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement , 2004, quant-ph/0407219.

[25]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[26]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[27]  N. Mermin Quantum Computer Science , 2007 .

[28]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[29]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[30]  Daniel D. Elleman,et al.  A Simple, Low Power, Multiple Pulse NMR Spectrometer , 1972 .

[31]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[32]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[33]  R Laflamme,et al.  Experimental approximation of the Jones polynomial with one quantum bit. , 2009, Physical review letters.

[34]  Alexandre Blais,et al.  Dispersive regime of circuit QED : Photon-dependent qubit dephasing and relaxation rates , 2008, 0810.1336.

[35]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[36]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[37]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[38]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[39]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[40]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[41]  M. Lewenstein,et al.  Relations between Entanglement Witnesses and Bell Inequalities , 2005, quant-ph/0504079.

[42]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[43]  J. R. Mitchell,et al.  Grover's search algorithm: An optical approach , 1999, quant-ph/9905086.

[44]  M L Glasser,et al.  Indirect interaction of solid-state qubits via two-dimensional electron gas. , 2001, Physical review letters.

[45]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[46]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[47]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[48]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[49]  Protocol for Universal Gates in Optimally Biased Superconducting Qubits , 2004, quant-ph/0412009.

[50]  R. Simons Coplanar waveguide circuits, components, and systems , 2001 .

[51]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[52]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[53]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[54]  R. Feynman Simulating physics with computers , 1999 .

[55]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[56]  P. C. Haljan,et al.  Implementation of Grover's quantum search algorithm in a scalable system , 2005 .

[57]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[58]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[59]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[60]  Alexandre Blais,et al.  Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurementThis paper was presented at the Theory CANADA 4 conference, held at Centre de recherches mathématiques, Montréal, Québec, Canada on 4–7 June 2008. , 2008, 0812.0218.

[61]  C.W.J. Beenakker,et al.  Parity meter for charge qubits: An efficient quantum entangler , 2006 .

[62]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[63]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[64]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[65]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[66]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[67]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[68]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[69]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[70]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[71]  Yasunobu Nakamura,et al.  Quantum Oscillations in Two Coupled Charge Qubits , 2003 .

[72]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[73]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[74]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[75]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[76]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[77]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[78]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[79]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[80]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[81]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[82]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[83]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[84]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[85]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[86]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[87]  A. Wallraff,et al.  Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system , 2008, Nature.

[88]  Switchable coupling between charge and flux qubits , 2007, cond-mat/0703012.

[89]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[90]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[91]  A. Cottet,et al.  Implémentation d'un bit quantique dans un circuit supraconducteur / Implementation of a quantum bit in a superconducting circuit , 2002 .

[92]  Erik Lucero,et al.  Violation of Bell's inequality in Josephson phase qubits , 2009, Nature.

[93]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[94]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[95]  H. Meyer,et al.  Controllable coupling of superconducting flux qubits. , 2006, Physical review letters.

[96]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[97]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[98]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[99]  J. Clarke,et al.  Low‐frequency noise in dc superconducting quantum interference devices below 1 K , 1987 .

[100]  Franco Nori,et al.  Scalable quantum computing with Josephson charge qubits. , 2002, Physical review letters.

[101]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[102]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[103]  A D Cole,et al.  PROCEEDINGS OF THE AMERICAN PHYSICAL SOCIETY. , 1915, Science.

[104]  G. Schoen,et al.  Quantum Manipulations of Small Josephson Junctions , 1997, cond-mat/9706016.

[105]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.