Towards a wide spectrum language to support program specification and program development

A wide spectrum language for systematic program development by correctness-preserving source-to-source transformations is outlined. Such a program development language comprises different styles of programming in one coherent framework ranging from predicate-calculus like formulations to machine-oriented algorithms, i.e. from a problem specification language to genuine programming language styles.

[1]  J. J. Horning,et al.  Report on the programming language Euclid , 1977, SIGP.

[2]  John Darlington,et al.  A Transformation System for Developing Recursive Programs , 1977, J. ACM.

[3]  Dennis F. Kibler,et al.  Improving and refining programs by program manipulation , 1976, ACM '76.

[4]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[5]  Robert D. Tennent,et al.  The denotational semantics of programming languages , 1976, CACM.

[6]  Edsger W. Dijkstra,et al.  Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.

[7]  Friedrich L. Bauer,et al.  Programming as an evolutionary process , 1975, ICSE '76.

[8]  Friedrich L. Bauer,et al.  Appendix: a philosophy of programming , 1975, Language Hierarchies and Interfaces.

[9]  John Darlington,et al.  Some transformations for developing recursive programs , 1975, Reliable Software.

[10]  B. H. Liskov,et al.  Specification techniques for data abstractions , 1975, IEEE Transactions on Software Engineering.

[11]  Donald E. Knuth,et al.  Structured Programming with go to Statements , 1974, CSUR.

[12]  J. Shepherdson,et al.  Computer programming and formal systems , 1965 .

[13]  John McCarthy,et al.  A basis for a mathematical theory of computation, preliminary report , 1899, IRE-AIEE-ACM '61 (Western).

[14]  Susan L. Gerhart,et al.  Correctness-preserving program transformations , 1975, POPL '75.

[15]  John McCarthy,et al.  Towards a Mathematical Science of Computation , 1962, IFIP Congress.

[16]  John McCarthy,et al.  A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .