Optimization of dispersive coefficients in the homogenization of the wave equation in periodic structures

We study dispersive effects of wave propagation in periodic media, which can be modelled by adding a fourth-order term in the homogenized equation. The corresponding fourth-order dispersive tensor is called Burnett tensor and we numerically optimize its values in order to minimize or maximize dispersion. More precisely, we consider the case of a two-phase composite medium with an eightfold symmetry assumption of the periodicity cell in two space dimensions. We obtain upper and lower bound for the dispersive properties, along with optimal microgeometries.

[1]  Grégoire Allaire,et al.  A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures , 2016 .

[2]  Cristian Barbarosie,et al.  Shape optimization of periodic structures , 2003 .

[3]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[4]  Qatu,et al.  Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol 146 , 2003 .

[5]  Harm Askes,et al.  Elastic wave dispersion in microstructured membranes , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Carlos Conca,et al.  Burnett coefficients and laminates , 2012 .

[7]  Carlos Conca,et al.  On Burnett coefficients in periodic media , 2006 .

[8]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[9]  Jaroslav Haslinger,et al.  Optimum composite material design , 1995 .

[10]  G. Allaire,et al.  Shape optimization with a level set based mesh evolution method , 2014 .

[11]  Agnes Lamacz,et al.  Dispersive effective models for waves in heterogeneous media , 2011 .

[12]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[13]  Luc Tartar,et al.  The General Theory of Homogenization: A Personalized Introduction , 2009 .

[14]  Kirill Cherednichenko,et al.  On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media , 2000 .

[15]  A. L. Karchevsky,et al.  Reconstruction of pressure velocities and boundaries of thin layers in thinly-stratified layers , 2010 .

[16]  Assyr Abdulle,et al.  A Priori Error Analysis of the Finite Element Heterogeneous Multiscale Method for the Wave Equation over Long Time , 2016, SIAM J. Numer. Anal..

[17]  G. Allaire,et al.  MULTI-PHASE STRUCTURAL OPTIMIZATION VIA A LEVEL SET METHOD ∗, ∗∗ , 2014 .

[18]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[19]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[20]  Mei Yulin,et al.  A level set method for structural topology optimization with multi-constraints and multi-materials , 2004 .

[21]  Grégoire Allaire,et al.  Damage and fracture evolution in brittle materials by shape optimization methods , 2011, J. Comput. Phys..

[22]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[24]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[25]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[26]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[27]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[28]  Grégoire Allaire,et al.  Diffractive Geometric Optics for Bloch Wave Packets , 2011 .

[29]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[30]  Olivier Pironneau,et al.  SENSITIVITY OF DARCY'S LAW TO DISCONTINUITIES , 2003 .

[31]  J. Bourgat Numerical experiments of the homogenization method , 1979 .

[32]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[33]  Michael Vogelius,et al.  First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..

[34]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[35]  O. Sigmund,et al.  Tailoring dispersion properties of photonic crystal waveguides by topology optimization , 2007 .

[36]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[37]  Olivier Pantz,et al.  Sensibilité de l'équation de la chaleur aux sauts de conductivité , 2005 .

[38]  Jeffrey Rauch,et al.  Hyperbolic Partial Differential Equations and Geometric Optics , 2012 .

[39]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[40]  Tomás Dohnal,et al.  Bloch-Wave Homogenization on Large Time Scales and Dispersive Effective Wave Equations , 2013, Multiscale Model. Simul..

[41]  Luc Tartar,et al.  The General Theory of Homogenization , 2010 .

[42]  Assyr Abulle,et al.  MATHICSE Technical Report : A priori error analysis of the finite element heterogenenous multiscale method for the wave equation in heterogenenous media over long time , 2015 .

[43]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long-Time Effects , 2014, Multiscale Model. Simul..

[44]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[45]  Jacob Fish,et al.  Non‐local dispersive model for wave propagation in heterogeneous media: one‐dimensional case , 2002 .

[46]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[47]  C. Wilcox Theory of Bloch waves , 1978 .

[48]  Carlos Conca,et al.  Bloch Approximation in Homogenization and Applications , 2002, SIAM J. Math. Anal..

[49]  Carlos Conca,et al.  ON BURNETT COEFFICIENTS IN PERIODIC MEDIA IN LOW CONTRAST REGIME , 2008 .

[50]  William Rundell,et al.  The determination of a discontinuity in a conductivity from a single boundary measurement , 1998 .

[51]  Carlos Conca,et al.  OPTIMAL BOUNDS ON DISPERSION COEFFICIENT IN ONE-DIMENSIONAL PERIODIC MEDIA , 2009 .

[52]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[53]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[54]  Takayuki Yamada,et al.  A topology optimisation for three-dimensional acoustics with the level set method and the fast multipole boundary element method , 2014 .

[55]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[56]  Agnes Lamacz,et al.  Dispersive effective models for waves in heterogeneous media , 2011 .

[57]  Annette L. Worthy,et al.  Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers , 1999 .

[58]  Ole Sigmund,et al.  Inverse design of dispersion compensating optical fiber using topology optimization , 2008 .

[59]  Carlos Conca,et al.  Homogenization of Periodic Structures via Bloch Decomposition , 1997, SIAM J. Appl. Math..