Thermo-Mechanical Reliability of Flip-Chip Assemblies with Heat-Spreaders

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  Yuan Li,et al.  Reliability study of high-pin-count flip-chip BGA , 2001, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220).

[3]  Yoshiharu Mutoh,et al.  Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb , 2002 .

[4]  A. Syed,et al.  Creep Crack Growth Prediction of Solder Joints During Temperature Cycling—An Engineering Approach , 1995 .

[5]  W. Engelmaier,et al.  Surface-mount attachment reliability of clip-leaded ceramic chip carriers on FR-4 circuit boards , 1989 .

[6]  C. P. Wong,et al.  Numerical and experimental investigations of large IC flip chip attach , 2000, 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070).

[7]  W. J. Plumbridge,et al.  Materials behaviour and the reliability in performance of solder joints , 1999 .

[8]  L. L. Mercado,et al.  Impact of solder pad size on solder joint reliability in flip chip PBGA packages , 1999, 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No.99CH36299).

[9]  D. Frear The Mechanics of Solder Alloy Interconnects , 1993 .

[10]  Leo J. Ernst Polymer Material Characterization and Modeling , 2000 .

[11]  H. Reichl,et al.  Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation , 2003, 53rd Electronic Components and Technology Conference, 2003. Proceedings..

[12]  Satya N. Atluri,et al.  Incremental path-independent integrals in inelastic and dynamic fracture mechanics , 1984 .

[13]  Ahmer Syed,et al.  Predicting solder joint reliability for thermal, power, and bend cycle within 25% accuracy , 2001, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220).

[14]  Bongtae Han,et al.  On the design parameters of flip-chip PBGA package assembly for optimum solder ball reliability , 2001 .

[15]  Herbert Reichl,et al.  Parametric FE-approach to flip-chip reliability under various loading conditions , 2004, Microelectron. Reliab..

[16]  K. Banerji,et al.  Constitutive relations for tin-based-solder joints , 1992, 1992 Proceedings 42nd Electronic Components & Technology Conference.

[17]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[18]  Hans Conrad,et al.  Effect of Microstructure Size on Deformation Kinetics and Thermo-Mechanical Fatigue of 63Sn37Pb Solder Joints , 1996 .

[19]  S. Rzepka,et al.  The Effect of Underfill and Underfill Delamination on the Thermal Stress in Flip-Chip Solder Joints , 1998 .

[20]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[21]  E. J. Rymaszewski,et al.  Microelectronics Packaging Handbook , 1988 .

[22]  D. Baldwin,et al.  Numerical and experimental study of the evolution of stresses in flip chip assemblies during assembly and thermal cycling , 1999, 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No.99CH36299).

[23]  H. D. Solomon,et al.  Predictions of solder joint fatigue life , 1990, 40th Conference Proceedings on Electronic Components and Technology.

[24]  Y. Haddad Viscoelasticity of Engineering Materials , 1994 .

[25]  Jianmin Qu,et al.  Three-Dimensional Versus Two-Dimensional Finite Element Modeling of Flip-Chip Packages , 1999 .

[26]  S. Manson,et al.  Thermal Stress and Low-Cycle Fatigue , 2020, Encyclopedia of Continuum Mechanics.

[27]  Peter Hacke,et al.  Computer Simulation of Thermo-Mechanical Fatigue of Solder Joints Including Microstructure Coarsening , 1993 .

[28]  E Suhir,et al.  Calculated thermally induced stresses in adhesively bonded and soldered assemblies. , 1986 .

[29]  J. W. Morris,et al.  Deformation of PbSn eutectic alloys at relatively high strain rates , 1979 .

[30]  Paul Bryant Koeneman Viscoelastic stress analysis and fatigue life prediction of a flip-chip-on-board electronic package , 1999 .

[31]  Ching-Ping Wong,et al.  MICROELECTRONICS: Flip the Chip. , 2000, Science.

[32]  H. Conrad,et al.  Microstructure coarsening during thermo-mechanical fatigue of Pb-Sn solder joints , 1997 .

[33]  R. Darveaux,et al.  Fatigue analysis of flip chip assemblies using thermal stress simulations and a Coffin-Manson relation , 1991, 1991 Proceedings 41st Electronic Components & Technology Conference.

[34]  John H. L. Pang,et al.  Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models , 2001 .

[35]  Herbert Reichl,et al.  Reliability of flip chip and chip size packages , 2000 .

[36]  T. Ono,et al.  Design method for high reliable flip chip BGA package , 2001, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220).

[37]  Ganesh Subbarayan,et al.  Maximizing Solder Joint Reliability Through Optimal Shape Design , 1997 .

[38]  Anthony Primavera,et al.  Effect of voids on the reliability of BGA/CSP solder joints , 2003, Microelectron. Reliab..

[39]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[40]  W. T. Chen,et al.  Materials and mechanics issues in flip-chip organic packaging , 1996, 1996 Proceedings 46th Electronic Components and Technology Conference.

[41]  A. Leson “There is plenty of room at the Bottom”. , 2005 .

[42]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[43]  H. D. Solomon,et al.  Energy Approach to the Fatigue of 60/40 Solder: Part I—Influence of Temperature and Cycle Frequency , 1995 .

[44]  Rao Tummala,et al.  Fundamentals of Microsystems Packaging , 2001 .

[45]  Wataru Nakayama,et al.  Electronic Packaging: Design, Materials, Process, and Reliability , 1998 .

[46]  R. Kreuzkamp,et al.  IMPROVING THE SOLDER JOINT RELIABILITY OF BGAS , 1998 .

[47]  Osamu Yamaguchi,et al.  Solder joint reliability of BGA package with Sn-Bi system solder balls , 2001 .

[48]  J. Braine,et al.  Room at the Top , 1957 .

[49]  M. Scherzer,et al.  FE-simulation for polymeric packaging materials , 1997, Proceedings. The First IEEE International Symposium on Polymeric Electronics Packaging, PEP '97 (Cat. No.97TH8268).

[50]  Jacek Skrzypek,et al.  Plasticity and Creep , 1994 .

[51]  Toshio Sudo,et al.  Prediction of Thermal Fatigue Life for Encapsulated Flip Chip Interconnection , 1995 .

[52]  John H. Lau,et al.  Effects of voids on bump chip carrier (BCC++) solder joint reliability , 2002, 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345).

[53]  Toshio Nakamura,et al.  Interfacial Delamination Near Solder Bumps and UBM in Flip-Chip Packages , 2001 .

[54]  Sergey V Shkarayev,et al.  Potential Failure Sites in a Flip-Chip Package With and Without Underfill , 1997, Application of Fracture Mechanics in Electronic Packaging.

[55]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[56]  Bernd Michel,et al.  Mechanical failure in COB-technology using glob-top encapsulation , 1996 .

[57]  S. Lee,et al.  Sensitivity study on material properties for the fatigue life prediction of solder joints under cyclic thermal loading , 1998 .

[58]  X. Baraton,et al.  Thermal fatigue of solder flip-chip assemblies , 1998, 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206).

[59]  P. Lundstrom,et al.  Measurements of solder bump lifetime as a function of underfill material properties , 1997, Proceedings. The First IEEE International Symposium on Polymeric Electronics Packaging, PEP '97 (Cat. No.97TH8268).

[60]  H. Reichl,et al.  Materials mechanics and mechanical reliability of flip chip assemblies on organic substrates , 1997, Proceedings 3rd International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces.

[61]  B. Zagar,et al.  Noncontacting strain measurements at high temperatures by the digital laser speckle technique , 2000 .

[62]  Akio Yasukawa,et al.  Reliability of Underfill-Encapsulated Flip-Chips With Heat Spreaders , 1998 .