Geometric representation of substitutions of Pisot type

We prove that a substitutive dynamical system of Pisot type contains a factor which is isomorphic to a minimal rotation on a torus. If the substitution is unimodular and satisfies a certain combinatorial condition, we prove that the dynamical system is measurably conjugate to an exchange of domains in a self-similar compact subset of the Euclidean space.

[1]  Minako Kimura,et al.  On Rauzy fractal , 1991 .

[2]  Luca Q. Zamboni,et al.  Geometric realizations of substitutions , 1998 .

[3]  P. Arnoux Recoding Sturmian Sequences on a Subshift of Finite Type Chaos from Order , 2001 .

[4]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[5]  M. Boshernitzan,et al.  Interval translation mappings , 1995, Ergodic Theory and Dynamical Systems.

[6]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .

[7]  Boris Solomyak,et al.  On the spectral theory of adic transformations , 1992 .

[8]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[9]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[10]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[11]  Enrico Bombieri,et al.  Which distributions of matter diffract? An initial investigation , 1986 .

[12]  Vincent Canterini Géométrie des substitutions Pisot unitaires , 2000 .

[13]  G. Rauzy Rotations sur les groupes, nombres algébriques, et substitutions , 1988 .

[14]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[15]  L. Zamboni,et al.  Directed Graphs and Substitutions , 2001, Theory of Computing Systems.

[16]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[17]  Bernard Host,et al.  Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.

[18]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[19]  Richard Kenyon,et al.  Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.

[20]  Sébastien Ferenczi,et al.  Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité $2n+1$ , 1995 .

[21]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[22]  M. Solomyak On simultaneous action of Markov shift and adic transformation , 1992 .