Consistent Adjoint Driven Importance Sampling using Space, Energy, and Angle
暂无分享,去创建一个
[1] T. L. Becker,et al. Hybrid Monte Carlo/Deterministic Methods for Radiation Shielding Problems. , 2009 .
[2] Douglas E. Peplow,et al. Monte Carlo Shielding Analysis Capabilities with MAVRIC , 2011 .
[3] Douglas E. Peplow,et al. Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling , 2013 .
[4] Thomas M. Evans,et al. Automated Weight-Window Generation for Threat Detection Applications Using ADVANTG , 2009 .
[5] Thomas M. Evans,et al. Simultaneous Optimization of Tallies in Difficult Shielding Problems , 2009 .
[6] R. P. Gardner,et al. Monte Carlo nuclear well logging benchmark problems with preliminary intercomparison results , 1991 .
[7] Alireza Haghighat,et al. MONTE CARLO VARIANCE REDUCTION WITH DETERMINISTIC IMPORTANCE FUNCTIONS , 2003 .
[8] Alireza Haghighat,et al. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function , 1998 .
[9] Thomas M. Evans,et al. Automated Variance Reduction Applied to Nuclear Well-Logging Problems , 2008 .
[10] T. M. Evans,et al. An enhanced geometry-independent mesh weight window generator for MCNP , 1997 .
[11] J Sweezy,et al. Automated variance reduction for MCNP using deterministic methods. , 2005, Radiation protection dosimetry.
[12] P. D. Soran,et al. AVATAR -- Automatic variance reduction in Monte Carlo calculations , 1997 .
[13] Kevin T. Clarno,et al. Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE , 2010 .
[14] N. Nariyama,et al. Systematic Evaluation of Neutron Shielding Effects for Materials , 1996 .