Study of non-Maxwellian trapped electrons by using generalized (r,q) distribution function and their effects on the dynamics of ion acoustic solitary wave

By using the generalized (r,q) distribution function, the effect of particle trapping on the linear and nonlinear evolution of an ion-acoustic wave in an electron-ion plasma has been discussed. The spectral indices q and r contribute to the high-energy tails and flatness on top of the distribution function respectively. The generalized Korteweg–de Vries equations with associated solitary wave solutions for different ranges of parameter r are derived by employing a reductive perturbation technique. It is shown that spectral indices r and q affect the trapping of electrons and subsequently the dynamics of the ion acoustic solitary wave significantly.

[1]  H. Shah,et al.  Effects of positron concentration, ion temperature, and plasma β value on linear and nonlinear two-dimensional magnetosonic waves in electron-positron-ion plasmas , 2005 .

[2]  S. Schwartz,et al.  Parallel propagating electromagnetic modes with the generalized (r,q) distribution function , 2004 .

[3]  S. El-Labany,et al.  Dust acoustic solitary waves and double layers in a dusty plasma with trapped electrons , 2003 .

[4]  M. Hellberg,et al.  Waves in non-Maxwellian plasmas with excess superthermal particles , 2001 .

[5]  H. Schamel Hole equilibria in Vlasov–Poisson systems: A challenge to wave theories of ideal plasmas , 2000 .

[6]  V. Lukash The very early Universe , 1999 .

[7]  R. Treumann Kinetic Theoretical Foundation of Lorentzian Statistical Mechanics , 1998, physics/9807010.

[8]  Abdullah Al Mamun Nonlinear propagation of ion-acoustic waves in a hot magnetized plasma with vortexlike electron distribution , 1998 .

[9]  H. Schamel Theory of Solitary Holes in Coasting Beams , 1997 .

[10]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[11]  H. Matsumoto,et al.  Evaluation of the modified plasma dispersion function for half‐integral indices , 1996 .

[12]  Richard L. Mace,et al.  A dispersion function for plasmas containing superthermal particles , 1995 .

[13]  R. Thorne,et al.  Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function , 1994 .

[14]  R. Thorne,et al.  Electromagnetic ion‐cyclotron instability in space plasmas , 1993 .

[15]  R. Thorne,et al.  Landau damping in space plasmas , 1991 .

[16]  Richard M. Thorne,et al.  The modified plasma dispersion function , 1991 .

[17]  F. Rizzato Weak nonlinear electromagnetic waves and low-frequency magnetic-field generation in electron-positron-ion plasmas , 1988, Journal of Plasma Physics.

[18]  D. Williams,et al.  Implications of large flow velocity signatures in nearly isotropic ion distributions. [in magnetospheric space plasmas , 1988 .

[19]  Hasegawa,et al.  Plasma distribution function in a superthermal radiation field. , 1985, Physical review letters.

[20]  D. Osterbrock Active Galactic Nuclei a , 1984 .

[21]  W. Feldman,et al.  Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV , 1981 .

[22]  V. Krapchev,et al.  Adiabatic theory for a single nonlinear wave in a Vlasov plasma , 1980 .

[23]  A. Emslie,et al.  The Physics of Solar Flares , 2009 .

[24]  H. Wilhelmsson,et al.  Review of plasma physics: Vol. 1 (ed. M. A. Leontovich, Consultants Bureau, New York, 1965) pp. 326, $ 12.50 , 1966 .

[25]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .