System identification in dynamical sampling

AbstractWe consider the problem of spatiotemporal sampling in a discrete infinite dimensional spatially invariant evolutionary process x(n) = Anx to recover an unknown convolution operator A given by a filter a∈ℓ1(ℤ)$a \in \ell ^{1}(\mathbb {Z})$ and an unknown initial state x modeled as a vector in ℓ2(ℤ)$\ell ^{2}(\mathbb {Z})$. Traditionally, under appropriate hypotheses, any x can be recovered from its samples on ℤ$\mathbb {Z}$ and A can be recovered by the classical techniques of deconvolution. In this paper, we will exploit the spatiotemporal correlation and propose a new sampling scheme to recover A and x that allows us to sample the evolving states x,Ax,⋯ ,AN−1x on a sub-lattice of ℤ$\mathbb {Z}$, and thus achieve a spatiotemporal trade off. The spatiotemporal trade off is motivated by several industrial applications (Lu and Vetterli, 2249–2252, 2009). Specifically, we show that {x(mℤ),Ax(mℤ),⋯,AN−1x(mℤ):N≥2m}$\{x(m\mathbb {Z}), Ax(m\mathbb {Z}), \cdots , A^{N-1}x(m\mathbb {Z}): N \geq 2m\}$ contains enough information to recover a typical “low pass filter” a and x almost surely, thus generalizing the idea of the finite dimensional case in Aldroubi and Krishtal, arXiv:1412.1538 (2014). In particular, we provide an algorithm based on a generalized Prony method for the case when both a and x are of finite impulse response and an upper bound of their support is known. We also perform a perturbation analysis based on the spectral properties of the operator A and initial state x, and verify the results by several numerical experiments. Finally, we provide several other numerical techniques to stabilize the proposed method, with some examples to demonstrate the improvement.

[1]  Akram Aldroubi,et al.  Exact Reconstruction of Signals in Evolutionary Systems Via Spatiotemporal Trade-off , 2015 .

[2]  Akram Aldroubi,et al.  Krylov Subspace Methods in Dynamical Sampling , 2014, ArXiv.

[3]  Akram Aldroubi,et al.  Finite Dimensional Dynamical Sampling: An Overview , 2015 .

[4]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[5]  M. A. Iwen,et al.  Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.

[6]  M. Zuhair Nashed,et al.  Sampling and Reconstruction of Signals in a Reproducing Kernel Subspace of $L^p({\Bbb R}^d)$ , 2009, ArXiv.

[7]  Ė. B. Vinberg,et al.  A course in algebra , 2003 .

[8]  Akram Aldroubi,et al.  Dynamical Sampling in Shift-Invariant Spaces , 2013 .

[9]  A. Timan THE BEST APPROXIMATION , 1963 .

[10]  Sui Tang,et al.  Dynamical Sampling in Hybrid Shift Invariant Spaces , 2014 .

[11]  Ben Adcock,et al.  Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients , 2014, Math. Comput..

[12]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[13]  Qiyu Sun,et al.  Nonuniform Average Sampling and Reconstruction of Signals with Finite Rate of Innovation , 2006, SIAM J. Math. Anal..

[14]  Martin Vetterli,et al.  Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[15]  Qiyu Sun,et al.  Frames in spaces with finite rate of innovation , 2008, Adv. Comput. Math..

[16]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[17]  Walter Gautschi,et al.  Norm estimates for inverses of Vandermonde matrices , 1974 .

[18]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[19]  Roland Badeau,et al.  High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.

[20]  Tapan K. Sarkar,et al.  On SVD for Estimating Generalized Eigenvalues of Singular Matrix Pencil in Noise , 1990 .

[21]  Gerald Matz,et al.  Reconstruction of time-varying fields in wireless sensor networks using shift-invariant spaces: Iterative algorithms and impact of sensor localization errors , 2010, 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[22]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[23]  Palle E. T. Jorgensen,et al.  A SAMPLING THEORY FOR INFINITE WEIGHTED GRAPHS , 2011 .

[24]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[25]  Gerlind Plonka,et al.  A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators , 2013 .

[26]  Martin Vetterli,et al.  Distributed Sampling of Signals Linked by Sparse Filtering: Theory and Applications , 2010, IEEE Transactions on Signal Processing.

[27]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[28]  Dmitry Batenkov,et al.  On the Accuracy of Solving Confluent Prony Systems , 2011, SIAM J. Appl. Math..

[29]  Gerald Matz,et al.  Distributed sampling and reconstruction of non-bandlimited fields in sensor networks based on shift-invariant spaces , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[31]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[32]  A. Mayeli,et al.  Exponential bases, Paley-Wiener spaces and applications , 2014, 1410.3170.

[33]  Deguang Han,et al.  Sampling Expansions in Reproducing Kernel Hilbert and Banach Spaces , 2009 .

[34]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[35]  Gerald Matz,et al.  Clustered wireless sensor networks for robust distributed field reconstruction based on hybrid shift-invariant spaces , 2009, 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications.

[36]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[37]  Akram Aldroubi,et al.  Dynamical sampling: Time–space trade-off☆ , 2013 .

[38]  G. Franzé,et al.  Vandermonde matrices on Chebyshev points , 1998 .

[39]  Palle Jorgensen,et al.  Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses , 2015, J. Mach. Learn. Res..

[40]  Piotr Indyk,et al.  Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.

[41]  Ben Adcock,et al.  Generalized sampling: extension to frames and inverse and ill-posed problems , 2013 .

[42]  Ben Adcock,et al.  A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases , 2010, 1007.1852.

[43]  Walter Gautschi,et al.  How (Un)stable Are Vandermonde Systems? , 2020, Asymptotic and Computational Analysis.

[44]  Gerald Matz,et al.  Distributed Field Reconstruction in Wireless Sensor Networks Based on Hybrid Shift-Invariant Spaces , 2012, IEEE Transactions on Signal Processing.

[45]  J. Benedetto,et al.  Modern Sampling Theory , 2012 .

[46]  Karlheinz Gröchenig,et al.  Relevant Sampling of Band-limited Functions , 2012, ArXiv.

[47]  Yang Wang,et al.  Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..

[48]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[49]  Jens Gerlach Christensen,et al.  SAMPLING IN SPACES OF BANDLIMITED FUNCTIONS ON COMMUTATIVE SPACES , 2011, 1107.4578.

[50]  X. Ren,et al.  Mathematics , 1935, Nature.