Modal parameter identification of a CMUT membrane using response data only

Capacitive micromachined ultrasonic transducers (CMUTs) are microelectromechanical systems used for the generation of ultrasounds. The fundamental element of the transducer is a clamped thin metallized membrane that vibrates under voltage variations. To control such oscillations and to optimize its dynamic response it is necessary to know the modal parameters of the membrane such as resonance frequency, damping and stiffness coefficients. The purpose of this work is to identify these parameters using only the time data obtained from the membrane center displacement. Dynamic measurements are conducted in time domain and we use two methods to identify the modal parameters: a subspace method based on an innovation model of the state-space representation and the continuous wavelet transform method based on the use of the ridge of the wavelet transform of the displacement. Experimental results are presented showing the effectiveness of these two procedures in modal parameter identification.

[1]  J. Juang Applied system identification , 1994 .

[2]  Joseph Lardiès Modal parameter identification from output data only , 2015 .

[3]  O. Oralkan,et al.  Capacitive micromachined ultrasonic transducer design for high power transmission , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  Joseph Lardies Modal Parameter Identification from Output Data Only: Equivalent Approaches , 2015 .

[5]  Bruno Torrésani,et al.  Analyse continue par ondelettes , 1995 .

[6]  H. Zeiger,et al.  Approximate linear realizations of given dimension via Ho's algorithm , 1974 .

[7]  Joseph Lardies,et al.  Modal parameter identification of stay cables from output-only measurements , 2011 .

[8]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[9]  B.T. Khuri-Yakub,et al.  Finite-element analysis of capacitive micromachined ultrasonic transducers , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[11]  T. Le,et al.  Continuous wavelet transform for modal identification using free decay response , 2004 .

[12]  Genshiro Kitagawa,et al.  State Space Modeling of Time Series , 1994 .

[13]  N. Kacem,et al.  Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation , 2016 .

[14]  Joseph Lardies,et al.  Identification of modal parameters using the wavelet transform , 2002 .

[15]  Pierre Argoul,et al.  INSTANTANEOUS INDICATORS OF STRUCTURAL BEHAVIOUR BASED ON THE CONTINUOUS CAUCHY WAVELET ANALYSIS , 2003 .

[16]  Massimo Ruzzene,et al.  NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .

[17]  J. Lardies,et al.  Dynamic and acoustic modeling of capacitive micromachined ultrasonic transducers , 2011, 2011 IEEE International Ultrasonics Symposium.