Sensitivity kernels for seismic Fresnel volume tomography
暂无分享,去创建一个
[1] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[2] Guust Nolet,et al. Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography , 2007, J. Comput. Phys..
[3] T. Matsuoka,et al. Seismic traveltime tomography using Fresnel volume approach , 1999 .
[4] Don W. Vasco,et al. Tomographic inversions for mantle P wave velocity structure based on the minimization of l 2 and l 1 norms of International Seismological Centre Travel Time Residuals , 1993 .
[6] A. Morelli. Inverse Problem Theory , 2010 .
[7] K. Yomogida. Fresnel zone inversion for lateral heterogeneities in the earth , 1992 .
[8] Guust Nolet,et al. Three-dimensional waveform sensitivity kernels , 1998 .
[9] K. Wolf,et al. Application of a linear finite-frequency theory to time-lapse crosswell tomography in ultrasonic and numerical experiments , 2007 .
[10] Guust Nolet,et al. Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .
[11] Marta Woodward,et al. Wave-equation tomography , 1992 .
[12] Reinaldo J. Michelena,et al. Tomographic traveltime inversion using natural pixels , 1991 .
[13] A. Devaney. Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.
[14] T. Jordan,et al. Structural sensitivities of finite-frequency seismic waves: a full-wave approach , 2006 .
[15] Jr. John W. Stockwell. Free software in education; a case study of CWP/SU; Seismic Un*x , 1997 .
[16] Li Zhao,et al. Finite‐frequency sensitivity kernels for head waves , 2006 .
[17] Gilles Lambaré,et al. Velocity macro‐model estimation from seismic reflection data by stereotomography , 1998 .
[18] Thomas H. Jordan,et al. Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .
[19] Roel Snieder,et al. Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes , 1996 .
[20] Guust Nolet,et al. Wavefront healing: a banana–doughnut perspective , 2001 .
[21] Guust Nolet,et al. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .
[22] R. Pratt,et al. Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data , 1991 .
[23] R. Snieder,et al. The effect of small-scale heterogeneity on the arrival time of waves , 2001 .
[24] Adam M. Dziewonski,et al. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .
[25] R. Snieder,et al. The Fresnel volume and transmitted waves , 2004 .
[26] Z. Xue,et al. Case story: time-lapse seismic crosswell monitoring of CO2 injected in an onshore sandstone aquifer , 2008 .
[27] Sensitivity Kernels And Fresnel Volumes For Transmitted Waves , 2008 .
[28] G. Nolet,et al. Seismic wave propagation and seismic tomography , 1987 .
[29] K. Aki,et al. Quantitative Seismology, 2nd Ed. , 2002 .
[30] A. J. Devaney,et al. Geophysical Diffraction Tomography , 1984 .
[31] E. L. Majer,et al. Wavepath traveltime tomography , 1993 .
[32] D. Smeulders,et al. Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves , 2006 .
[33] Gerard T. Schuster,et al. Wavepath eikonal traveltime inversion: Theory , 1993 .
[34] L. E. Larsen,et al. Limitations of Imaging with First-Order Diffraction Tomography , 1984 .
[35] M. Toksöz,et al. Diffraction tomography and multisource holography applied to seismic imaging , 1987 .
[36] F. A. Dahlen,et al. Finite-frequency sensitivity kernels for boundary topography perturbations , 2004 .
[37] Vlastislav Cerveny,et al. Fresnel volume ray tracing , 1992 .