Thermophysical Properties of Lead-Bismuth Eutectic Alloy in Reactor Safety Analyses

A consistent set of thermophysical properties of a lead-bismuth eutectic (LBE) alloy was developed for use in safety analyses of lead-alloy-cooled fast reactor systems. The vapor and liquid thermodynamic states of LBE were modeled up to and above the critical point based on a van-der-Waals type of equation. We assumed that LBE vapor is composed of monatomic lead and bismuth and diatomic, bismuth components, and that liquid LBE is a non-ideal mixture of lead and bismuth. Recommended equations were also presented for the transport properties and surface tension of liquid LBE.

[1]  Mengqi Zeng,et al.  Liquid Metals , 1951, Nature.

[2]  Werner Maschek,et al.  The Development of SIMMER-III, An Advanced Computer Program for LMFR Safety Analysis, and Its Application to Sodium Experiments , 2006 .

[3]  P. Wydler Liquid metal cooled reactors , 2005 .

[4]  Y. Kurata,et al.  Experimental Investigation of Lead-Bismuth Evaporation Behavior , 2005 .

[5]  A. Azad Critical temperature of the lead–bismuth eutectic (LBE) alloy , 2005 .

[6]  Kh. B. Khokonov,et al.  The Surface Tension of Liquid Near-Eutectic Alloys of Lead–Bismuth System , 2003 .

[7]  A. G. Mozgovoi,et al.  Experimental Investigation of the Surface Tension of Liquid Lead and Bismuth in the Vicinity of the Melting Point , 2003 .

[8]  A. G. Mozgovoi,et al.  Experimental Investigation of the Density of Molten Lead–Bismuth Eutectic , 2003 .

[9]  D. Giuranno,et al.  Surface properties of Bi-Pb liquid alloys , 2002 .

[10]  Koji Morita,et al.  Thermodynamic properties and equations of state for fast reactor safety analysis: Part II: Properties of fast reactor materials , 1998 .

[11]  Koji Morita,et al.  Thermodynamic properties and equations of state for fast reactor safety analysis: Part I: Analytic equation-of-state model , 1998 .

[12]  Y. Tsuchiya,et al.  Sound Velocity in the Liquid Bismuth-Zinc System , 1993 .

[13]  Y. Tsuchiya,et al.  The Velocity of Sound in Liquid Pb-Te Alloys , 1990 .

[14]  Gernot Pottlacher,et al.  Measurement of thermophysical properties of lead by a submicrosecond pulse-heating method in the range 2000–5000 K , 1990 .

[15]  W. R. Bohl,et al.  SIMMER-II: A computer program for LMFBR disrupted core analysis , 1990 .

[16]  V. Venugopal,et al.  A thermodynamic study of lead + bismuth using a transpiration technique , 1977 .

[17]  V. Venugopal,et al.  Vapour pressure of bismuth calculated from Mg + Bi and Pb + Bi alloys using a transpiration technique , 1977 .

[18]  T. Litovitz,et al.  Mechanism of volume viscosity in the liquid metal system lead‐bismuth , 1974 .

[19]  Z. Moser Thermodynamie Properties of Liquid Lead-Bismuth Solutions , 1973 .

[20]  A. Grosse Simple Empirical Relationship between the Compressibility of Ideal Liquids and Temperature up to the Critical Point , 1971 .

[21]  Y. S. Touloukian Thermal conductivity: metallic elements and alloys , 1971 .

[22]  A. Grosse,et al.  Electrical conductivity of tin, lead, and bismuth near their boiling points with estimates to their critical temperatures , 1968 .

[23]  K. D. Carlson,et al.  Cross Sections for Electron‐Impact Fragmentation and Dissociation Energies of the Dimer and Tetramer of Bismuth , 1967 .

[24]  G. H. Golden,et al.  Thermophysical properties of sodium , 1967 .

[25]  A. K. Fischer Vapor Pressure of Bismuth , 1966 .

[26]  A. Cosgarea,et al.  Study of the Vapors of Liquid Lead and Bismuth , 1966 .

[27]  J. M. Coulson,et al.  Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.

[28]  A. T. Aldred,et al.  Vapor Pressure of Liquid Bismuth , 1963 .

[29]  A. Grosse The temperature range of liquid metals and an estimate of their critical constants , 1961 .

[30]  H. Eyring,et al.  SIGNIFICANT STRUCTURES IN LIQUIDS, V. THERMODYNAMIC AND TRANSPORT PROPERTIES OF MOLTEN METALS. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. M. Watson,et al.  Prediction of Critical Temperatures and Heats of Vaporization , 1931 .

[32]  F. Sauerwald,et al.  Über die innere Reibung geschmolzener Metalle und Legierungen. III. Die innere Reibung von Kupfer, Antimon, usw und Kupfer–Antimon-, Kupfer–Zinn-, Blei–Wismut-Legierungen , 1927 .

[33]  W. B. Brown Thermal Conductivities of Some Metals in the Solid and Liquid States , 1923 .

[34]  M. Martynyuk,et al.  Critical parameters of refractory metals , 1999 .

[35]  M. Martynyuk ESTIMATION OF THE CRITICAL POINT OF METALS WITH THE USE OF THE GENERALIZEDVAN DER WAALS EQUATION , 1998 .

[36]  L. Leibowitz,et al.  Thermodynamic and transport properties of sodium liquid and vapor , 1995 .

[37]  S. Blairs The critical temperatures of the elements , 1977 .

[38]  Donald T. Hawkins,et al.  Selected Values of the Thermodynamic Properties of the Elements , 1973 .

[39]  D. T. Hawkins,et al.  Selected values of the thermodynamic properties of binary alloys , 1973 .

[40]  Paul G. Klemens,et al.  Thermophysical properties of matter - the TPRC data series. Volume 1. Thermal conductivity - metallic elements and alloys. (Reannouncement). Data book , 1970 .

[41]  S. S. Kutateladze,et al.  Liquid-metal heat transfer media , 1959 .

[42]  Richard N. Lyon,et al.  Liquid-metals handbook , 1954 .