Complexity Framework for Forbidden Subgraphs IV: The Steiner Forest Problem
暂无分享,去创建一个
Jelle J. Oostveen | H. Bodlaender | D. Paulusma | B. Martin | E. J. V. Leeuwen | Matthew Johnson | Sukanya Pandey | Siani Smith
[1] D. Paulusma,et al. Complexity Framework for Forbidden Subgraphs II: When Hardness Is Not Preserved under Edge Subdivision , 2022, 2211.14214.
[2] Jelle J. Oostveen,et al. Complexity Framework For Forbidden Subgraphs , 2022, ArXiv.
[3] Laurent Bulteau,et al. An Algorithmic Framework for Locally Constrained Homomorphisms , 2022, WG.
[4] Erik Jan van Leeuwen,et al. Steiner Trees for Hereditary Graph Classes: a Treewidth Perspective , 2020, Theor. Comput. Sci..
[5] Yota Otachi,et al. Subgraph Isomorphism on Graph Classes that Exclude a Substructure , 2019, Algorithmica.
[6] Shinya Fujita,et al. Safe number and integrity of graphs , 2018, Discret. Appl. Math..
[7] Robert Ganian,et al. Solving Integer Linear Programs with a Small Number of Global Variables and Constraints , 2017, IJCAI.
[8] Tadashi Sakuma,et al. Safe set problem on graphs , 2016, Discret. Appl. Math..
[9] Petr A. Golovach,et al. List coloring in the absence of two subgraphs , 2013, Discret. Appl. Math..
[10] Marcin Kaminski,et al. Max-cut and Containment Relations in Graphs , 2010, Theor. Comput. Sci..
[11] Elisabeth Gassner,et al. The Steiner Forest Problem revisited , 2010, J. Discrete Algorithms.
[12] Mohammad Taghi Hajiaghayi,et al. Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth , 2009, JACM.
[13] Ge Xia,et al. Improved Parameterized Upper Bounds for Vertex Cover , 2006, MFCS.
[14] Detlef Seese,et al. Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.
[15] Yoji Kajitani,et al. On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three , 1988, Discret. Math..
[16] Vasek Chvátal,et al. Recognizing decomposable graphs , 1984, J. Graph Theory.
[17] Richard M. Karp,et al. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.
[18] R. L. Brooks. On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] A. Cayley. A theorem on trees , 2009 .
[20] C. W. Borchardt. Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. , 1860 .