Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments

While the literature on nonclassical measurement error traditionally relies on the availability of an auxiliary dataset containing correctly measured observations, this paper establishes that the availability of instruments enables the identification of a large class of nonclassical nonlinear errors-in-variables models with continuously distributed variables. The main identifying assumption is that, conditional on the value of the true regressors, some "measure of location" of the distribution of the measurement error (e.g. its mean, mode or median) is equal to zero. The proposed approach relies on the eigenvalue-eigenfunction decomposition of an integral operator associated with specific joint probability densities. The main identifying assumption is used to order the eigenfunctions so that the decomposition is unique. The authors propose a convenient sieve-based estimator, derive its asymptotic properties and investigate its finite-sample behavior through Monte Carlo simulations. An example of application to the relationship between earnings and divorce rates is also provided.

[1]  Xiaotong Shen,et al.  On methods of sieves and penalization , 1997 .

[2]  Liqun Wang Estimation of nonlinear models with Berkson measurement errors , 2004 .

[3]  Rosa L. Matzkin,et al.  Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors , 2005 .

[4]  Arthur Lewbel,et al.  Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors , 1998 .

[5]  A. Chesher The effect of measurement error , 1991 .

[6]  Jerry A. Hausman,et al.  Nonlinear errors in variables Estimation of some Engel curves , 1995 .

[7]  Tong Li,et al.  Robust and consistent estimation of nonlinear errors-in-variables models , 2002 .

[8]  John Bound,et al.  Measurement error in survey data , 2001 .

[9]  F. Smithies Linear Operators , 2019, Nature.

[10]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[11]  Susanne M. Schennach,et al.  Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models , 2004 .

[12]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[13]  Yingyao Hu,et al.  Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution , 2008 .

[14]  H. White,et al.  An Extended Class of Instrumental Variables for the Estimation of Causal Effects , 2011 .

[15]  Arthur Lewbel Demand Estimation with Expenditure Measurement Errors on the Left and Right Hand Side , 1996 .

[16]  Hidehiko Ichimura,et al.  Identification and estimation of polynomial errors-in-variables models , 1991 .

[17]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[18]  John Bound,et al.  The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right? , 1988, Journal of Labor Economics.

[19]  Estimation in the nonlinear errors-in-variables model , 1998 .

[20]  Han Hong,et al.  Measurement Error Models with Auxiliary Data , 2005 .

[21]  Tong Li,et al.  Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators , 1998 .

[22]  A. Chesher,et al.  Duration response measurement error , 2002 .

[23]  Xiaohong Chen,et al.  Semi‐Nonparametric IV Estimation of Shape‐Invariant Engel Curves , 2003 .

[24]  J. Hausman Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left , 2001 .

[25]  J. Florens,et al.  Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .

[26]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[27]  Enno Mammen,et al.  Identification of marginal effects in nonseparable models without monotonicity , 2007 .

[28]  Rosa L. Matzkin Nonparametric Estimation of Nonadditive Random Functions , 2003 .

[29]  C. Bollinger,et al.  Measurement Error in the Current Population Survey: A Nonparametric Look , 1998, Journal of Labor Economics.

[30]  G. Ridder,et al.  Estimation of Nonlinear Models with Measurement Error Using Marginal Information1 , 2004 .

[31]  Xiaohong Chen,et al.  Semiparametric Efficiency in GMM Models with Nonclassical Measurement Error , 2006 .

[32]  Susanne M. Schennach,et al.  Estimation of Nonlinear Models with Measurement Error , 2004 .

[33]  Whitney K. Newey Flexible Simulated Moment Estimation of Nonlinear Errors-in-Variables Models , 2001, Review of Economics and Statistics.

[34]  Whitney Newey Convergence Rates for Series Estimators , 1993 .

[35]  C. Stein Efficient Nonparametric Testing and Estimation , 1956 .

[36]  E. Tamer,et al.  A simple estimator for nonlinear error in variable models , 2003 .

[37]  Xiaotong Shen,et al.  Sieve extremum estimates for weakly dependent data , 1998 .

[38]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[39]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[40]  Andrew Chesher Parameter approximations for quantile regressions with measurement error , 2001 .

[41]  W. J. Hall,et al.  Information and Asymptotic Efficiency in Parametric-Nonparametric Models , 1983 .