Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications

Single-track, asymmetric nanopores can currently be functionalised with a spatially inhomogeneous distribution of fixed charges and a variety of pore tip shapes. Optimising the asymmetric nanopore characteristics is crucial for practical applications in nanofluidics. We have addressed here this question for three cases based on different input/output chemical and electrical signals: (i) ion pumping up a concentration gradient by means of a periodic, time-dependent bias potential, (ii) information processing with a single nanopore acting as the nanofluidic diode of a logic gate, and (iii) electrical energy harvesting using a nanopore that separates two solutions of different salt concentrations. The results show the nanopore characteristics (size, shape, and charge distribution) that should be optimised for each application. In particular, the control of the pore tip size and charge appears to be crucial in all cases because it is in this narrow region where the interaction of the ions and the pore surface occurs, and this will eventually determine the nanodevice performance.

[1]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[2]  Eliane H. Trepagnier,et al.  Fabrication of 10 nm diameter hydrocarbon nanopores , 2008 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Zuzanna S Siwy,et al.  Conical nanopore membranes: controlling the nanopore shape. , 2006, Small.

[5]  A. Majumdar,et al.  Polarity switching and transient responses in single nanotube nanofluidic transistors. , 2005, Physical review letters.

[6]  Salvador Mafe,et al.  Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[7]  Reinhard Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[8]  Shizhi Qian,et al.  Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores , 2010 .

[9]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[10]  J. Manzanares,et al.  Incorporating ionic size in the transport equations for charged nanopores , 2010 .

[11]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[12]  C. R. Martin,et al.  Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy. , 2004, Analytical chemistry.

[13]  P. Stroeve,et al.  Protein transport through gold-coated, charged nanopores : Effects of applied voltage , 2006 .

[14]  Javier Cervera,et al.  Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. , 2007, The Journal of chemical physics.

[15]  Ronald W Davis,et al.  Label-free biosensing with functionalized nanopipette probes , 2009, Proceedings of the National Academy of Sciences.

[16]  Robert S. Eisenberg,et al.  Tuning transport properties of nanofluidic devices with local charge inversion. , 2009, Journal of the American Chemical Society.

[17]  Y. Korchev,et al.  Rapid switching of ion current in narrow pores: implications for biological ion channels , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[19]  Li-Jing Cheng,et al.  Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. , 2009, ACS nano.

[20]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[21]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[22]  P. Apel,et al.  Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles , 2007 .

[23]  Z. Siwy,et al.  Nanofluidic Bipolar Transistors , 2008 .

[24]  J. Xue,et al.  Molecular dynamics simulations on the ionic current through charged nanopores , 2009 .

[25]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[26]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[27]  P. Stroeve,et al.  Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores. , 2005, The journal of physical chemistry. B.

[28]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[29]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[30]  S. Jacobson,et al.  Effect of conical nanopore diameter on ion current rectification. , 2009, The journal of physical chemistry. B.

[31]  A. Morrison,et al.  Solid-state nanopore technologies for nanopore-based DNA analysis. , 2007, Nanomedicine.

[32]  Lasse Murtomäki,et al.  Ionic transport processes , 2008 .

[33]  Kwang Bok Kim,et al.  Ionic circuits based on polyelectrolyte diodes on a microchip. , 2009, Angewandte Chemie.

[34]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[35]  Z. Siwy,et al.  A nanodevice for rectification and pumping ions , 2004 .

[36]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[37]  A. Alcaraz,et al.  Model calculations of ion transport against its concentration gradient when the driving force is a pH difference across a charged membrane , 1997 .

[38]  Richard M Crooks,et al.  Microelectrochemical logic circuits. , 2003, Journal of the American Chemical Society.

[39]  Uwe Pischel,et al.  Multivalued Logic with a Tristable Fluorescent Switch , 2009 .

[40]  Long Chen,et al.  Electric energy generation in single track-etched nanopores , 2008 .

[41]  Q. Ouyang,et al.  How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores , 2007 .

[42]  P. Apel,et al.  Analysis of channel shapes in track membranes by scanning electron microscopy , 2010, Journal of microscopy.

[43]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[44]  P. Stroeve,et al.  pH and Ionic Strength Effects on Amino Acid Transport through Au-Nanotubule Membranes Charged with Self-Assembled Monolayers , 2007 .

[45]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[46]  D. Baur,et al.  Rectification and voltage gating of ion currents in a nanofabricated pore , 2002 .

[47]  Yaoqun Li,et al.  Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification , 2010 .

[48]  Alex Smolyanitsky,et al.  Field effect modulation of ionic conductance of cylindrical silicon-on-insulator nanopore array , 2010 .

[49]  E. Katz,et al.  Optoelectronic properties of nanostructured ensembles controlled by biomolecular logic systems. , 2008, ACS nano.

[50]  Peidong Yang,et al.  Nanofluidic diodes based on nanotube heterojunctions. , 2009, Nano letters.

[51]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[52]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[53]  Ronald W Davis,et al.  Current rectification with poly-l-lysine-coated quartz nanopipettes. , 2006, Nano letters.

[54]  P. Apel,et al.  A novel explanation for fluctuations of ion current through narrow pores , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[56]  Q. Ouyang,et al.  Asymmetric properties of ion transport in a charged conical nanopore. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Lin Li,et al.  A pH‐Gating Ionic Transport Nanodevice: Asymmetric Chemical Modification of Single Nanochannels , 2010, Advanced materials.

[58]  Z. Siwy,et al.  Squeezing ionic liquids through nanopores. , 2009, Nano letters.

[59]  Andrew G. Glen,et al.  APPL , 2001 .

[60]  R. Neumann,et al.  Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements , 2007 .

[61]  P. Apel,et al.  Controlled fabrication of ion track nanowires and channels , 2010 .

[62]  K. Healy,et al.  Modifying the surface charge of single track-etched conical nanopores in polyimide , 2008, Nanotechnology.

[63]  S. Jacobson,et al.  Ion transport in nanofluidic funnels. , 2010, ACS nano.

[64]  Z. Siwy,et al.  Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Olivier Sudre,et al.  Control of ionic transport through gated single conical nanopores , 2009, Analytical and bioanalytical chemistry.

[66]  P. Apel,et al.  Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties , 2008, Nanotechnology.

[67]  Javier Cervera,et al.  Multivalued and reversible logic gates implemented with metallic nanoparticles and organic ligands. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[68]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[69]  Javier Cervera,et al.  Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. , 2010, Journal of the American Chemical Society.

[70]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[71]  Bo Zhang,et al.  Electrochemistry of nanopore electrodes in low ionic strength solutions. , 2006, The journal of physical chemistry. B.