Progress in Spin Logic Devices Based on Domain-Wall Motion

Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.

[1]  S. Couet,et al.  Magnetization-switching dynamics driven by chiral coupling , 2024, Physical Review Applied.

[2]  E. Raymenants,et al.  Towards fully electrically controlled domain-wall logic , 2024, AIP Advances.

[3]  C. Avci,et al.  Domain walls speed up in insulating ferrimagnetic garnets , 2024, APL Materials.

[4]  Tong Wu,et al.  Perspective on imaging antiferromagnetic domains in thin films with the magneto-optical birefringence effect , 2023, APL Materials.

[5]  T. Hayward,et al.  Magnetic domain walls: types, processes and applications , 2023, Journal of Physics D: Applied Physics.

[6]  J. Incorvia,et al.  Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for Noise-Resilient Spiking Neural Networks , 2023, Applied Physics Letters.

[7]  Lijun Zhu Switching of Perpendicular Magnetization by Spin–Orbit Torque , 2023, Advanced materials.

[8]  S. Piramanayagam,et al.  Ultralow Energy Domain Wall Device for Spin-Based Neuromorphic Computing. , 2023, ACS nano.

[9]  Stephan J. Kyle,et al.  Machine learning using magnetic stochastic synapses , 2023, Neuromorph. Comput. Eng..

[10]  Otitoaleke G. Akinola,et al.  Shape‐Dependent Multi‐Weight Magnetic Artificial Synapses for Neuromorphic Computing , 2022 .

[11]  H. Deniz,et al.  Three-dimensional racetrack memory devices designed from freestanding magnetic heterostructures , 2022, Nature Nanotechnology.

[12]  Ian T. Vidamour,et al.  Reconfigurable reservoir computing in a magnetic metamaterial , 2022, Communications Physics.

[13]  See-Hun Yang,et al.  Domain wall memory: Physics, materials, and devices , 2022, Physics Reports.

[14]  D. Tsvetanova,et al.  Magnetic domain walls: from physics to devices , 2021, 2021 IEEE International Electron Devices Meeting (IEDM).

[15]  D. Tsvetanova,et al.  Nanoscale domain wall devices with magnetic tunnel junction read and write , 2021, Nature Electronics.

[16]  J. Raabe,et al.  Field- and Current-Driven Magnetic Domain-Wall Inverter and Diode , 2021, Physical Review Applied.

[17]  D. Lacour,et al.  Tunable Stochasticity in an Artificial Spin Network , 2021, Advanced materials.

[18]  Joshaniel F. K. Cooper,et al.  Dynamically Driven Emergence in a Nanomagnetic System , 2021, Advanced Functional Materials.

[19]  L. Vila,et al.  Current-Driven Domain Wall Dynamics in Ferrimagnetic Nickel-Doped Mn4N Films: Very Large Domain Wall Velocities and Reversal of Motion Direction across the Magnetic Compensation Point. , 2021, Nano letters.

[20]  D. Tsvetanova,et al.  All-electrical control of scaled spin logic devices based on domain wall motion , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[21]  Otitoaleke G. Akinola,et al.  Domain wall-magnetic tunnel junction spin–orbit torque devices and circuits for in-memory computing , 2020, 2010.13879.

[22]  Christoph Adelmann,et al.  Opportunities and challenges for spintronics in the microelectronics industry , 2020, Nature Electronics.

[23]  Jing Wu,et al.  Paradigm of Magnetic Domain Wall-Based In-Memory Computing , 2020 .

[24]  A. Basu,et al.  A 126 μW Readout Circuit in 65 nm CMOS With Successive Approximation-Based Thresholding for Domain Wall Magnet-Based Random Number Generator , 2020, IEEE Sensors Journal.

[25]  Weisheng Zhao,et al.  Optoelectronic domain-wall motion for logic computing , 2020 .

[26]  L. Vila,et al.  Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system , 2020, Nature.

[27]  E. Eleftheriou,et al.  Memory devices and applications for in-memory computing , 2020, Nature Nanotechnology.

[28]  Chirag Garg,et al.  Magnetic Racetrack Memory: From Physics to the Cusp of Applications Within a Decade , 2020, Proceedings of the IEEE.

[29]  B. Diény,et al.  Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes , 2020, Scientific Reports.

[30]  Simone Finizio,et al.  Current-driven magnetic domain-wall logic , 2020, Nature.

[31]  Jong Min Lee,et al.  Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets , 2020 .

[32]  Sumit Dutta,et al.  Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators , 2019, Nano letters.

[33]  L. Heyderman,et al.  Chiral domain wall injector driven by spin-orbit torques. , 2019, Nano letters.

[34]  W. Lew,et al.  Synaptic element for neuromorphic computing using a magnetic domain wall device with synthetic pinning sites , 2019, Journal of Physics D: Applied Physics.

[35]  C. Adelmann,et al.  Reconfigurable submicrometer spin-wave majority gate with electrical transducers , 2019, Science advances.

[36]  J. Vijayakumar,et al.  Chirally coupled nanomagnets , 2019, Science.

[37]  A. Kimel,et al.  Writing magnetic memory with ultrashort light pulses , 2019, Nature Reviews Materials.

[38]  Weisheng Zhao,et al.  Low Spin Polarization in Heavy-Metal–Ferromagnet Structures Detected Through Domain-Wall Motion by Synchronized Magnetic Field and Current , 2019, Physical Review Applied.

[39]  E. Linfield,et al.  Toward Chirality‐Encoded Domain Wall Logic , 2019, Advanced Functional Materials.

[40]  Everton Bonturim,et al.  Scalable energy-efficient magnetoelectric spin–orbit logic , 2018, Nature.

[41]  D. Mocuta,et al.  Scaled spintronic logic device based on domain wall motion in magnetically interconnected tunnel junctions , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[42]  See-Hun Yang,et al.  Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature , 2018, Nature Communications.

[43]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[44]  B. Koopmans,et al.  Integrating all-optical switching with spintronics , 2018, Nature Communications.

[45]  Xiaoxi Liu,et al.  Nanoscale Compositional Modification in Co/Pd Multilayers for Controllable Domain Wall Pinning in Racetrack Memory , 2018, physica status solidi (RRL) - Rapid Research Letters.

[46]  C. Ross,et al.  Current-Induced Domain Wall Motion in a Compensated Ferrimagnet. , 2018, Physical review letters.

[47]  Jo De Boeck,et al.  Top-Pinned STT-MRAM Devices With High Thermal Stability Hybrid Free Layers for High-Density Memory Applications , 2018, IEEE Transactions on Magnetics.

[48]  B. Diény,et al.  A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. , 2018, Nanoscale.

[49]  C. Rettner,et al.  Highly Asymmetric Chiral Domain-Wall Velocities in Y-Shaped Junctions. , 2018, Nano letters.

[50]  Iuliana Radu,et al.  Interconnected magnetic tunnel junctions for spin-logic applications , 2018 .

[51]  J. Wunderlich,et al.  Current polarity-dependent manipulation of antiferromagnetic domains , 2017, Nature Nanotechnology.

[52]  Zhongming Zeng,et al.  Multilevel storage device based on domain-wall motion in a magnetic tunnel junction , 2017 .

[53]  H. Ohno,et al.  Spintronics based random access memory: a review , 2017 .

[54]  Rudy Lauwereins,et al.  Exchange-driven Magnetic Logic , 2017, Scientific Reports.

[55]  G. Beach,et al.  Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film , 2017 .

[56]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[57]  S. Parkin,et al.  Novel domain wall dynamics in synthetic antiferromagnets , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  Hyunsoo Yang,et al.  Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation. , 2017, Physical review letters.

[59]  C. Adelmann,et al.  A majority gate with chiral magnetic solitons , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  Iuliana Radu,et al.  Operating conditions and stability of spin torque majority gates: Analytical understanding and numerical evidence , 2017 .

[61]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[62]  Iuliana Radu,et al.  Toward error-free scaled spin torque majority gates , 2016 .

[63]  Byong‐Guk Park,et al.  Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques. , 2016, Physical review letters.

[64]  Arnaud Furnemont,et al.  [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications , 2016 .

[65]  W. Lew,et al.  Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure , 2016, Scientific Reports.

[66]  C. A. Ross,et al.  Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls , 2016, Nature Communications.

[67]  H. Ohno,et al.  Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal , 2015, Nature Physics.

[68]  S. Goolaup,et al.  Transverse Domain Wall Profile for Spin Logic Applications , 2015, Scientific Reports.

[69]  Stuart Parkin,et al.  Memory on the racetrack. , 2015, Nature nanotechnology.

[70]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[71]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[72]  S. Parkin,et al.  Chiral spin torque arising from proximity-induced magnetization , 2014, Nature Communications.

[73]  Tetsuhiro Suzuki,et al.  Transition in mechanism for current-driven magnetic domain wall dynamics , 2014 .

[74]  Hyunsoo Yang,et al.  Thermally assisted domain wall nucleation in perpendicular anisotropy trilayer nanowires , 2014, 1404.1135.

[75]  Hideo Ohno,et al.  Two-barrier stability that allows low-power operation in current-induced domain-wall motion , 2013, Nature Communications.

[76]  Tetsuhiro Suzuki,et al.  Current-Induced Magnetic Domain Wall Motion in a Co/Ni Nanowire with Structural Inversion Asymmetry , 2013 .

[77]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[78]  G. Csaba,et al.  Majority Gate for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy , 2012, IEEE Transactions on Magnetics.

[79]  Hjm Henk Swagten,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[80]  L. Vila,et al.  Magnon magnetoresistance of NiFe nanowires: Size dependence and domain wall detection , 2011 .

[81]  Kuei-Hung Shen,et al.  Racetrack Memory: A high-performance, low-cost, non-volatile memory based on magnetic domain walls , 2011, 2011 International Electron Devices Meeting.

[82]  Mathias Kläui,et al.  Current-induced domain wall motion in nanoscale ferromagnetic elements , 2011 .

[83]  L. Vila,et al.  Detection of domain-wall position and magnetization reversal in nanostructures using the magnon contribution to the resistivity. , 2011, Physical review letters.

[84]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[85]  L. Buda-Prejbeanu,et al.  Fast current-induced domain-wall motion controlled by the Rashba effect. , 2011, Nature materials.

[86]  S. Fukami,et al.  Magnetic field insensitivity of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire , 2011 .

[87]  G. Beach,et al.  Enhanced current-induced domain wall motion by tuning perpendicular magnetic anisotropy , 2011 .

[88]  S. Fukami,et al.  Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. , 2011, Nature materials.

[89]  H. Ohno,et al.  Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire , 2011 .

[90]  Shunsuke Fukami,et al.  Control of Multiple Magnetic Domain Walls by Current in a Co/Ni Nano-Wire , 2010 .

[91]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[92]  A. Schuhl,et al.  High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy , 2008, 0812.1515.

[93]  S. Auffret,et al.  Domain wall spin torquemeter. , 2008, Physical review letters.

[94]  Shunsuke Fukami,et al.  Control of Domain Wall Position by Electrical Current in Structured Co/Ni Wire with Perpendicular Magnetic Anisotropy , 2008, 0809.0047.

[95]  Gen Tatara,et al.  Microscopic approach to current-driven domain wall dynamics , 2008, 0807.2894.

[96]  C. Rettner,et al.  Current-Controlled Magnetic Domain-Wall Nanowire Shift Register , 2008, Science.

[97]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[98]  Geoffrey S. D. Beach,et al.  Current-induced domain wall motion , 2008 .

[99]  L. J. Sham,et al.  Spin-based logic in semiconductors for reconfigurable large-scale circuits , 2007, Nature.

[100]  Eric E. Fullerton,et al.  Threshold currents to move domain walls in films with perpendicular anisotropy , 2007 .

[101]  Luc Thomas,et al.  Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. , 2007, Physical review letters.

[102]  R. Cowburn,et al.  Magnetic domain wall serial-in parallel-out shift register , 2006 .

[103]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[104]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[105]  D. Lacour,et al.  Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning. , 2005, Physical review letters.

[106]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[107]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[108]  Yoshishige Suzuki,et al.  Micromagnetic understanding of current-driven domain wall motion in patterned nanowires , 2004, cond-mat/0407628.

[109]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[110]  H. Ohno,et al.  Current-induced domain-wall switching in a ferromagnetic semiconductor structure , 2004, Nature.

[111]  Edmond Cambril,et al.  Domain wall motion induced by spin polarized currents in ferromagnetic ring structures , 2003 .

[112]  B. Courtoi,et al.  Beyond CMOS , 2002, Proceedings 20th IEEE VLSI Test Symposium (VTS 2002).

[113]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[114]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[115]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[116]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[117]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[118]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[119]  L. Berger,et al.  Exchange forces between domain wall and electric current in permalloy films of variable thickness , 1988 .

[120]  Paulo P. Freitas,et al.  Observation of s‐d exchange force between domain walls and electric current in very thin Permalloy films , 1985 .

[121]  L. Berger,et al.  Low‐field magnetoresistance and domain drag in ferromagnets , 1978 .

[122]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[123]  Gurney,et al.  Giant magnetoresistive in soft ferromagnetic multilayers. , 1991, Physical review. B, Condensed matter.

[124]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .